Enhancing virgin olive oil authentication with Bayesian probabilistic models and near infrared spectroscopy

IF 5.3 2区 农林科学 Q1 ENGINEERING, CHEMICAL
María-del-Mar Garrido-Cuevas , Ana-María Garrido-Varo , Federico Marini , María-Teresa Sánchez , Dolores Pérez-Marín
{"title":"Enhancing virgin olive oil authentication with Bayesian probabilistic models and near infrared spectroscopy","authors":"María-del-Mar Garrido-Cuevas ,&nbsp;Ana-María Garrido-Varo ,&nbsp;Federico Marini ,&nbsp;María-Teresa Sánchez ,&nbsp;Dolores Pérez-Marín","doi":"10.1016/j.jfoodeng.2024.112443","DOIUrl":null,"url":null,"abstract":"<div><div>Ensuring the authenticity of Extra Virgin olive oils is crucial due to the high risk of fraudulent practices associated with this valuable product. Traditional methods rely on physicochemical and organoleptic analyses, which are costly, time-consuming, and require specialized personnel. This study introduces probabilistic classification models utilizing Bayesian methods to enhance the reliability of Near Infrared Spectroscopy (NIRS) for olive oil (OO) quality control. Unlike traditional models, these methos allow the quantification of uncertainty, thereby improving decision-making precision in industrial applications. A total of 259 olive oils (104 extra virgin (EV), 71 virgin (V) and 84 lampante (L)) were analysed by two instruments with different optical configurations and sample presentation methods. Partial Least Square-Discriminant Analysis (PLS-DA) was applied to develop a two-step classification strategy: first, to discriminate non-LOO <em>versus</em> LOO categories, and then to predict the category of non-LOO samples (discriminating EVOO <em>versus</em> VOO). The models achieved a correct classification rate (CCR) of up to 86.36% for discriminating EVOO vs. VOO with the bench-top instrument, with more than half of the samples classified into their respective categories with a probability exceeding 75%, which highlights their effectiveness in ensuring the quality and authenticity of VOOs while optimizing resources in the olive oil industry. Similar results (81.82 %) were obtained for the portable device, despite differences in operational range, optical quality and price. The results demonstrate that probabilistic classification models can significantly improve the classification process by quantifying uncertainty, thereby complementing traditional methods and providing a robust framework for classifying olive oils categories.</div></div>","PeriodicalId":359,"journal":{"name":"Journal of Food Engineering","volume":"391 ","pages":"Article 112443"},"PeriodicalIF":5.3000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Engineering","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0260877424005090","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Ensuring the authenticity of Extra Virgin olive oils is crucial due to the high risk of fraudulent practices associated with this valuable product. Traditional methods rely on physicochemical and organoleptic analyses, which are costly, time-consuming, and require specialized personnel. This study introduces probabilistic classification models utilizing Bayesian methods to enhance the reliability of Near Infrared Spectroscopy (NIRS) for olive oil (OO) quality control. Unlike traditional models, these methos allow the quantification of uncertainty, thereby improving decision-making precision in industrial applications. A total of 259 olive oils (104 extra virgin (EV), 71 virgin (V) and 84 lampante (L)) were analysed by two instruments with different optical configurations and sample presentation methods. Partial Least Square-Discriminant Analysis (PLS-DA) was applied to develop a two-step classification strategy: first, to discriminate non-LOO versus LOO categories, and then to predict the category of non-LOO samples (discriminating EVOO versus VOO). The models achieved a correct classification rate (CCR) of up to 86.36% for discriminating EVOO vs. VOO with the bench-top instrument, with more than half of the samples classified into their respective categories with a probability exceeding 75%, which highlights their effectiveness in ensuring the quality and authenticity of VOOs while optimizing resources in the olive oil industry. Similar results (81.82 %) were obtained for the portable device, despite differences in operational range, optical quality and price. The results demonstrate that probabilistic classification models can significantly improve the classification process by quantifying uncertainty, thereby complementing traditional methods and providing a robust framework for classifying olive oils categories.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Food Engineering
Journal of Food Engineering 工程技术-工程:化工
CiteScore
11.80
自引率
5.50%
发文量
275
审稿时长
24 days
期刊介绍: The journal publishes original research and review papers on any subject at the interface between food and engineering, particularly those of relevance to industry, including: Engineering properties of foods, food physics and physical chemistry; processing, measurement, control, packaging, storage and distribution; engineering aspects of the design and production of novel foods and of food service and catering; design and operation of food processes, plant and equipment; economics of food engineering, including the economics of alternative processes. Accounts of food engineering achievements are of particular value.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信