Enhanced contamination risk assessment for aquifer management using the geo-resistivity and DRASTIC model in alluvial settings

N.J. George , O.E. Agbasi , A.J. Umoh , A.M. Ekanem , N.I. Udosen , J.E. Thomas , M.U. Aka , J.S. Ejepu
{"title":"Enhanced contamination risk assessment for aquifer management using the geo-resistivity and DRASTIC model in alluvial settings","authors":"N.J. George ,&nbsp;O.E. Agbasi ,&nbsp;A.J. Umoh ,&nbsp;A.M. Ekanem ,&nbsp;N.I. Udosen ,&nbsp;J.E. Thomas ,&nbsp;M.U. Aka ,&nbsp;J.S. Ejepu","doi":"10.1016/j.clwat.2024.100060","DOIUrl":null,"url":null,"abstract":"<div><div>This study employs geo-electric surveys and Vertical Electrical Sounding (VES) data, as well as a spatiotemporal assessment, to evaluate aquifer characteristics in the study area, with the main thrust of revealing significant subsurface variability, vulnerability, and the consequent contamination of an aquifer system already established to be prolific. The study employed the DRASTIC model, integrated with geophysical resistivity methods, to assess groundwater vulnerability. Using Schlumberger electrode configurations, resistivity surveys at 19 VES locations provided insights into key aquifer parameters, including depth to groundwater, aquifer media, and vadose zone impact. This approach enhanced parameter accuracy for robust vulnerability assessments.The aquifers, primarily composed of fine to gravelly sands from the Benin Formation, exhibit high porosity and permeability. However, discrepancies in transmissivity, hydraulic conductivity, and permeability point to inconsistent groundwater behavior. Groundwater vulnerability, evaluated using the DRASTIC Index (DI), is classified as moderate to high, with influencing factors such as shallow water table depth (28 %), vadose zone properties (25 %), and net recharge (20 %). Predominantly H and K curve types suggest moderate to high contamination risks, while the region's topography and arenitic lithology exacerbate vulnerability due to slower filtration rates. The study emphasizes the need for careful groundwater management, given the aquifer's susceptibility to contamination. Regular monitoring is recommended, particularly in densely populated or agriculturally active areas, to mitigate contamination risks associated with the area's high permeability, porosity, and recharge variability. The DRASTIC model improves contamination risk assessment in sedimentary environments by analyzing several factors: depth to water (DTW), net recharge (NR), aquifer media (AM), soil media (SM), topography (T), the vadose zone (IPVZ), and hydraulic conductivity (C). Among these, DTW, IPVZ, and NR were the most sensitive contributors to the DRASTIC index (DI) for assessing vulnerability. AM and SM were moderately sensitive, while T and C had minimal impact. To effectively mitigate contamination, priority should be given to DTW, AM, and SM, with less focus on T and C. These insights help in better resource allocation and sustainable aquifer management.</div></div>","PeriodicalId":100257,"journal":{"name":"Cleaner Water","volume":"3 ","pages":"Article 100060"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Water","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950263224000589","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study employs geo-electric surveys and Vertical Electrical Sounding (VES) data, as well as a spatiotemporal assessment, to evaluate aquifer characteristics in the study area, with the main thrust of revealing significant subsurface variability, vulnerability, and the consequent contamination of an aquifer system already established to be prolific. The study employed the DRASTIC model, integrated with geophysical resistivity methods, to assess groundwater vulnerability. Using Schlumberger electrode configurations, resistivity surveys at 19 VES locations provided insights into key aquifer parameters, including depth to groundwater, aquifer media, and vadose zone impact. This approach enhanced parameter accuracy for robust vulnerability assessments.The aquifers, primarily composed of fine to gravelly sands from the Benin Formation, exhibit high porosity and permeability. However, discrepancies in transmissivity, hydraulic conductivity, and permeability point to inconsistent groundwater behavior. Groundwater vulnerability, evaluated using the DRASTIC Index (DI), is classified as moderate to high, with influencing factors such as shallow water table depth (28 %), vadose zone properties (25 %), and net recharge (20 %). Predominantly H and K curve types suggest moderate to high contamination risks, while the region's topography and arenitic lithology exacerbate vulnerability due to slower filtration rates. The study emphasizes the need for careful groundwater management, given the aquifer's susceptibility to contamination. Regular monitoring is recommended, particularly in densely populated or agriculturally active areas, to mitigate contamination risks associated with the area's high permeability, porosity, and recharge variability. The DRASTIC model improves contamination risk assessment in sedimentary environments by analyzing several factors: depth to water (DTW), net recharge (NR), aquifer media (AM), soil media (SM), topography (T), the vadose zone (IPVZ), and hydraulic conductivity (C). Among these, DTW, IPVZ, and NR were the most sensitive contributors to the DRASTIC index (DI) for assessing vulnerability. AM and SM were moderately sensitive, while T and C had minimal impact. To effectively mitigate contamination, priority should be given to DTW, AM, and SM, with less focus on T and C. These insights help in better resource allocation and sustainable aquifer management.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信