Diffusive dissolution of α-alumina in industrial soda-lime silica glass

IF 3.2 3区 材料科学 Q1 MATERIALS SCIENCE, CERAMICS
Fatima T. Yoshizawa , Anne-Céline Garel-Laurin , Ekaterina Burov , Michael J. Toplis
{"title":"Diffusive dissolution of α-alumina in industrial soda-lime silica glass","authors":"Fatima T. Yoshizawa ,&nbsp;Anne-Céline Garel-Laurin ,&nbsp;Ekaterina Burov ,&nbsp;Michael J. Toplis","doi":"10.1016/j.jnoncrysol.2024.123351","DOIUrl":null,"url":null,"abstract":"<div><div>This study advances the understanding of alumina dissolution mechanisms in industrial soda-lime-silica glass. Electron Probe Micro-Analysis (EPMA) revealed diffusion-controlled behavior between 1300 and 1450 ° C, with interface melt compositions varying significantly with temperature. These variations align with thermodynamic predictions. At temperatures <span><math><mo>≥</mo></math></span> 1400 °C, the interface enters the peraluminous field, while at lower temperatures, it lies in the domain of excess charge-balancing cations. Compositional profiles, including uphill diffusion at <span><math><mo>≥</mo></math></span> 1400 °C, necessitate a multicomponent diffusion matrix approach. Two primary exchange mechanisms are identified: the first involves alumina and charge-balancing cations (mainly Mg+Ca), and the second involves silica and charge-balanced alumina. However, alumina diffusivity can be approximated using an effective binary diffusion coefficient (EBDC), which correlates with the viscosity of the interface melt, even when a viscosity maximum is present. These results emphasize the importance of multicomponent approaches to understanding mineral dissolution and diffusion, particularly in peraluminous systems.</div></div>","PeriodicalId":16461,"journal":{"name":"Journal of Non-crystalline Solids","volume":"650 ","pages":"Article 123351"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Non-crystalline Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022309324005271","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study advances the understanding of alumina dissolution mechanisms in industrial soda-lime-silica glass. Electron Probe Micro-Analysis (EPMA) revealed diffusion-controlled behavior between 1300 and 1450 ° C, with interface melt compositions varying significantly with temperature. These variations align with thermodynamic predictions. At temperatures 1400 °C, the interface enters the peraluminous field, while at lower temperatures, it lies in the domain of excess charge-balancing cations. Compositional profiles, including uphill diffusion at 1400 °C, necessitate a multicomponent diffusion matrix approach. Two primary exchange mechanisms are identified: the first involves alumina and charge-balancing cations (mainly Mg+Ca), and the second involves silica and charge-balanced alumina. However, alumina diffusivity can be approximated using an effective binary diffusion coefficient (EBDC), which correlates with the viscosity of the interface melt, even when a viscosity maximum is present. These results emphasize the importance of multicomponent approaches to understanding mineral dissolution and diffusion, particularly in peraluminous systems.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Non-crystalline Solids
Journal of Non-crystalline Solids 工程技术-材料科学:硅酸盐
CiteScore
6.50
自引率
11.40%
发文量
576
审稿时长
35 days
期刊介绍: The Journal of Non-Crystalline Solids publishes review articles, research papers, and Letters to the Editor on amorphous and glassy materials, including inorganic, organic, polymeric, hybrid and metallic systems. Papers on partially glassy materials, such as glass-ceramics and glass-matrix composites, and papers involving the liquid state are also included in so far as the properties of the liquid are relevant for the formation of the solid. In all cases the papers must demonstrate both novelty and importance to the field, by way of significant advances in understanding or application of non-crystalline solids; in the case of Letters, a compelling case must also be made for expedited handling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信