Correlations for aerodynamic force coefficients of non-spherical particles in compressible flows

IF 3.6 2区 工程技术 Q1 MECHANICS
Christian Gorges , Victor Chéron , Anjali Chopra , Fabian Denner , Berend van Wachem
{"title":"Correlations for aerodynamic force coefficients of non-spherical particles in compressible flows","authors":"Christian Gorges ,&nbsp;Victor Chéron ,&nbsp;Anjali Chopra ,&nbsp;Fabian Denner ,&nbsp;Berend van Wachem","doi":"10.1016/j.ijmultiphaseflow.2024.105111","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents particle-resolved direct numerical simulations using three-dimensional body-fitted hexahedral meshes to investigate the aerodynamic force and torque coefficients of non-spherical particles in compressible flows. The simulations focus on three particle shapes: a prolate spheroid, an oblate spheroid, and a rod-like particle, across a range of Mach numbers (0.3 to 2.0), angles of attack (0°to 90°), and particle Reynolds numbers (100 to 300). Results show that the particle shape significantly impacts the aerodynamic forces on a particle in a compressible flow, with oblate spheroids exhibiting the highest drag, lift, and torque values. Correlations for these aerodynamic coefficients of the particles in a compressible flow are developed and validated. These correlations advance multiphase flow modelling by improving the accuracy of point-particle simulations for non-spherical particles in compressible flows.</div></div>","PeriodicalId":339,"journal":{"name":"International Journal of Multiphase Flow","volume":"184 ","pages":"Article 105111"},"PeriodicalIF":3.6000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Multiphase Flow","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301932224003872","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents particle-resolved direct numerical simulations using three-dimensional body-fitted hexahedral meshes to investigate the aerodynamic force and torque coefficients of non-spherical particles in compressible flows. The simulations focus on three particle shapes: a prolate spheroid, an oblate spheroid, and a rod-like particle, across a range of Mach numbers (0.3 to 2.0), angles of attack (0°to 90°), and particle Reynolds numbers (100 to 300). Results show that the particle shape significantly impacts the aerodynamic forces on a particle in a compressible flow, with oblate spheroids exhibiting the highest drag, lift, and torque values. Correlations for these aerodynamic coefficients of the particles in a compressible flow are developed and validated. These correlations advance multiphase flow modelling by improving the accuracy of point-particle simulations for non-spherical particles in compressible flows.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.30
自引率
10.50%
发文量
244
审稿时长
4 months
期刊介绍: The International Journal of Multiphase Flow publishes analytical, numerical and experimental articles of lasting interest. The scope of the journal includes all aspects of mass, momentum and energy exchange phenomena among different phases such as occur in disperse flows, gas–liquid and liquid–liquid flows, flows in porous media, boiling, granular flows and others. The journal publishes full papers, brief communications and conference announcements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信