Qishen Granule protects against myocardial ischemia by promoting angiogenesis through BMP2-Dll4-Notch1 pathway

IF 4.7 4区 医学 Q1 CHEMISTRY, MEDICINAL
Yiqin Hong , Hui Wang , Hanyan Xie , Xinyi Zhong , Xu Chen , Lishuang Yu , Yawen Zhang , Jingmei Zhang , Qiyan Wang , Binghua Tang , Linghui Lu , Dongqing Guo
{"title":"Qishen Granule protects against myocardial ischemia by promoting angiogenesis through BMP2-Dll4-Notch1 pathway","authors":"Yiqin Hong ,&nbsp;Hui Wang ,&nbsp;Hanyan Xie ,&nbsp;Xinyi Zhong ,&nbsp;Xu Chen ,&nbsp;Lishuang Yu ,&nbsp;Yawen Zhang ,&nbsp;Jingmei Zhang ,&nbsp;Qiyan Wang ,&nbsp;Binghua Tang ,&nbsp;Linghui Lu ,&nbsp;Dongqing Guo","doi":"10.1016/j.chmed.2023.12.007","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>Therapeutic angiogenesis has become a promising approach for treating ischemic heart disease (IHD). The present study aims to investigate the effects of Qishen Granule (QSG) on angiogenesis in myocardial ischemia (MI) and the potential mechanism.</div></div><div><h3>Methods</h3><div><em>In vivo</em> study was conducted on rat model of myocardial infarction. QSG was performed daily at a dose of 2.352 g/kg for four weeks. Cardiac function was assessed by echocardiogram and pro-angiogenic effects were evaluated by Laser Doppler and CD31 expression. Oxygen-glucose deprivation (OGD) was applied in cultured human umbilical vein endothelial cells (HUVECs). Cell viability, wound healing and tube formation assay were used to test functions of HUVECs. ELISA and Western blots were used to assess protein expressions of bone morphogenetic protein 2-delta-like 4-notch homolog 1 (BMP2-Dll4-Notch1) signaling pathway.</div></div><div><h3>Results</h3><div>The results showed that QSG improved heart function, cardiac blood flow and microvessel density in myocardial ischemic rats. <em>In vitro,</em> QSG protected HUVECs by promoting the cell viability and tube formation. QSG upregulated bone morphogenetic protein-2 (BMP2) and downregulated delta-like 4 (Dll4) and notch homolog 1 (Notch1) expressions both in rats and HUVECs.</div></div><div><h3>Conclusion</h3><div>QSG protected against MI by promoting angiogenesis through BMP2-Dll4-Notch1 pathway. BMP2 might be a promising therapeutic target for IHD.</div></div>","PeriodicalId":9916,"journal":{"name":"Chinese Herbal Medicines","volume":"17 1","pages":"Pages 139-147"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Herbal Medicines","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674638424000364","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Objective

Therapeutic angiogenesis has become a promising approach for treating ischemic heart disease (IHD). The present study aims to investigate the effects of Qishen Granule (QSG) on angiogenesis in myocardial ischemia (MI) and the potential mechanism.

Methods

In vivo study was conducted on rat model of myocardial infarction. QSG was performed daily at a dose of 2.352 g/kg for four weeks. Cardiac function was assessed by echocardiogram and pro-angiogenic effects were evaluated by Laser Doppler and CD31 expression. Oxygen-glucose deprivation (OGD) was applied in cultured human umbilical vein endothelial cells (HUVECs). Cell viability, wound healing and tube formation assay were used to test functions of HUVECs. ELISA and Western blots were used to assess protein expressions of bone morphogenetic protein 2-delta-like 4-notch homolog 1 (BMP2-Dll4-Notch1) signaling pathway.

Results

The results showed that QSG improved heart function, cardiac blood flow and microvessel density in myocardial ischemic rats. In vitro, QSG protected HUVECs by promoting the cell viability and tube formation. QSG upregulated bone morphogenetic protein-2 (BMP2) and downregulated delta-like 4 (Dll4) and notch homolog 1 (Notch1) expressions both in rats and HUVECs.

Conclusion

QSG protected against MI by promoting angiogenesis through BMP2-Dll4-Notch1 pathway. BMP2 might be a promising therapeutic target for IHD.
芪参颗粒通过BMP2-Dll4-Notch1途径促进血管生成,对心肌缺血具有保护作用
目的治疗性血管生成已成为治疗缺血性心脏病(IHD)的一种很有前途的方法。本研究旨在探讨芪肾颗粒(QSG)对心肌缺血血管生成的影响及其可能机制。方法采用大鼠心肌梗死模型进行体内研究。每日进行QSG,剂量为2.352 g/kg,持续4周。超声心动图评价心功能,激光多普勒和CD31表达评价促血管生成作用。采用氧糖剥夺法(OGD)培养人脐静脉内皮细胞(HUVECs)。采用细胞活力、创面愈合和成管实验检测HUVECs的功能。ELISA和Western blots检测骨形态发生蛋白2-delta-样4-notch同源物1 (BMP2-Dll4-Notch1)信号通路的蛋白表达。结果大鼠心功能、心脏血流及微血管密度均有明显改善。在体外,QSG通过促进细胞活力和试管形成来保护HUVECs。QSG上调骨形态发生蛋白2 (BMP2),下调delta-like 4 (Dll4)和notch同源物1 (Notch1)在大鼠和huvec中的表达。结论芪多糖通过BMP2-Dll4-Notch1通路促进血管生成,对心肌梗死具有保护作用。BMP2可能是IHD的一个有希望的治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chinese Herbal Medicines
Chinese Herbal Medicines CHEMISTRY, MEDICINAL-
CiteScore
4.40
自引率
5.30%
发文量
629
审稿时长
10 weeks
期刊介绍: Chinese Herbal Medicines is intended to disseminate the latest developments and research progress in traditional and herbal medical sciences to researchers, practitioners, academics and administrators worldwide in the field of traditional and herbal medicines. The journal's international coverage ensures that research and progress from all regions of the world are widely included. CHM is a core journal of Chinese science and technology. The journal entered into the ESCI database in 2017, and then was included in PMC, Scopus and other important international search systems. In 2019, CHM was successfully selected for the “China Science and Technology Journal Excellence Action Plan” project, which has markedly improved its international influence and industry popularity. CHM obtained the first impact factor of 3.8 in Journal Citation Reports (JCR) in 2023.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信