Green hydrogen production via a photocatalyst-enabled optical fiber system: A promising route to net-zero emissions

IF 5.8 Q2 ENERGY & FUELS
Han Fu , Zhenhua Pan , Yen-Jung Sean Lai , Jirapat Ananpattarachai , Michael Serpa , Nora Shapiro , Zhe Zhao , Paul Westerhoff
{"title":"Green hydrogen production via a photocatalyst-enabled optical fiber system: A promising route to net-zero emissions","authors":"Han Fu ,&nbsp;Zhenhua Pan ,&nbsp;Yen-Jung Sean Lai ,&nbsp;Jirapat Ananpattarachai ,&nbsp;Michael Serpa ,&nbsp;Nora Shapiro ,&nbsp;Zhe Zhao ,&nbsp;Paul Westerhoff","doi":"10.1016/j.egycc.2025.100175","DOIUrl":null,"url":null,"abstract":"<div><div>Achieving zero emissions is a critical goal in combating climate change. Hydrogen is a versatile energy carrier contributing to this objective. Green hydrogen production via photocatalytic (PC) and photoelectrochemical (PEC) water splitting is promising due to its potential to utilize renewable energy (direct solar, photovoltaics, wind, hydropower). However, current PC and PEC water splitting systems face challenges such as low light utilization efficiency and high operational costs related to both catalyst selection and reactor designs. This study presents a novel photocatalytic hydrogen production system, POF-STO, by attaching a modified strontium titanate (STO) onto thin polymer optical fibers (POF). Light launched from 365 nm LED into the POF lumen is side-emitted and excites STO in a porous layer on the POF surface. This PC system improves upon our previous PEC-POF-ITO/g-C<sub>3</sub>N<sub>4</sub> system, which required dual nanoparticles of indium tin oxide (ITO) to make the POF optoelectrodes conductive plus graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>) photocatalysts. Our innovative inside-out light delivery mechanism with the POF ensures efficient photon confinement and energy transfer to the STO surface, maximizing light utilization. The chemically stable STO with up to 7-fold H<sub>2</sub> production rates than the PEC-POF-ITO/g-C<sub>3</sub>N<sub>4</sub> system was observed. Our POF-STO system produced stable H<sub>2</sub> production rates in both acidic and alkaline environments, with &lt;10 % reduction in hydrogen generation when using tap water and seawater. Eliminating complex electrical setups, potentiostats, electrodes, and aqueous electrolytes significantly reduces system costs. Using bundles with multiple POF-STOs and utilizing heat from LEDs allowed operation at higher water temperatures, further increasing H<sub>2</sub> production efficiency. Compared with other reactor designs, the POF-STO emerges as an innovative approach with potential to achieve ambitious global net-zero emission goals.</div></div>","PeriodicalId":72914,"journal":{"name":"Energy and climate change","volume":"6 ","pages":"Article 100175"},"PeriodicalIF":5.8000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and climate change","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666278725000029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Achieving zero emissions is a critical goal in combating climate change. Hydrogen is a versatile energy carrier contributing to this objective. Green hydrogen production via photocatalytic (PC) and photoelectrochemical (PEC) water splitting is promising due to its potential to utilize renewable energy (direct solar, photovoltaics, wind, hydropower). However, current PC and PEC water splitting systems face challenges such as low light utilization efficiency and high operational costs related to both catalyst selection and reactor designs. This study presents a novel photocatalytic hydrogen production system, POF-STO, by attaching a modified strontium titanate (STO) onto thin polymer optical fibers (POF). Light launched from 365 nm LED into the POF lumen is side-emitted and excites STO in a porous layer on the POF surface. This PC system improves upon our previous PEC-POF-ITO/g-C3N4 system, which required dual nanoparticles of indium tin oxide (ITO) to make the POF optoelectrodes conductive plus graphitic carbon nitride (g-C3N4) photocatalysts. Our innovative inside-out light delivery mechanism with the POF ensures efficient photon confinement and energy transfer to the STO surface, maximizing light utilization. The chemically stable STO with up to 7-fold H2 production rates than the PEC-POF-ITO/g-C3N4 system was observed. Our POF-STO system produced stable H2 production rates in both acidic and alkaline environments, with <10 % reduction in hydrogen generation when using tap water and seawater. Eliminating complex electrical setups, potentiostats, electrodes, and aqueous electrolytes significantly reduces system costs. Using bundles with multiple POF-STOs and utilizing heat from LEDs allowed operation at higher water temperatures, further increasing H2 production efficiency. Compared with other reactor designs, the POF-STO emerges as an innovative approach with potential to achieve ambitious global net-zero emission goals.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy and climate change
Energy and climate change Global and Planetary Change, Renewable Energy, Sustainability and the Environment, Management, Monitoring, Policy and Law
CiteScore
7.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信