{"title":"Incentivizing hydrogen: A perspective review of lifecycle analysis methodology disparities affecting hydrogen incentives in policy frameworks","authors":"Santiago Gonzalez Hernandez, Abby Kirchofer","doi":"10.1016/j.egycc.2024.100172","DOIUrl":null,"url":null,"abstract":"<div><div>Hydrogen is anticipated to play a pivotal role in decarbonizing the global energy supply chain, and governments worldwide are implementing policies and incentives to foster the adoption of low-carbon hydrogen technologies. However, the divergent lifecycle carbon intensity (CI) calculation methodologies and sustainability requirements at federal and state levels may inadvertently promote certain low-carbon hydrogen technologies over others due to the CI variability arising from the calculation methodologies. This perspective focuses on key sustainable hydrogen technologies favored by industry leaders for commercial deployment. It offers a comprehensive review of the applicability, challenges, and opportunities associated with these technologies under relevant government incentive programs. The study evaluates published lifecycle CI data for hydrogen production methods including low-temperature water electrolysis, high-temperature water electrolysis, biomass gasification, and steam methane reforming of natural gas with carbon capture and sequestration. Methodologies and requirements from prominent programs such as the California Low Carbon Fuel Standard (LCFS), the US federal clean hydrogen production tax credit (45V), and the EU's renewable energy directive (RED) are compared by the authors. This perspective's analysis contributes valuable insights to the discourse on life cycle assessment (LCA) modeling for low-CI hydrogen. It highlights the discrepancies between key government incentives for hydrogen technologies deemed critical to meeting the world's climate goals.</div></div>","PeriodicalId":72914,"journal":{"name":"Energy and climate change","volume":"6 ","pages":"Article 100172"},"PeriodicalIF":5.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and climate change","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666278724000485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrogen is anticipated to play a pivotal role in decarbonizing the global energy supply chain, and governments worldwide are implementing policies and incentives to foster the adoption of low-carbon hydrogen technologies. However, the divergent lifecycle carbon intensity (CI) calculation methodologies and sustainability requirements at federal and state levels may inadvertently promote certain low-carbon hydrogen technologies over others due to the CI variability arising from the calculation methodologies. This perspective focuses on key sustainable hydrogen technologies favored by industry leaders for commercial deployment. It offers a comprehensive review of the applicability, challenges, and opportunities associated with these technologies under relevant government incentive programs. The study evaluates published lifecycle CI data for hydrogen production methods including low-temperature water electrolysis, high-temperature water electrolysis, biomass gasification, and steam methane reforming of natural gas with carbon capture and sequestration. Methodologies and requirements from prominent programs such as the California Low Carbon Fuel Standard (LCFS), the US federal clean hydrogen production tax credit (45V), and the EU's renewable energy directive (RED) are compared by the authors. This perspective's analysis contributes valuable insights to the discourse on life cycle assessment (LCA) modeling for low-CI hydrogen. It highlights the discrepancies between key government incentives for hydrogen technologies deemed critical to meeting the world's climate goals.