Silicon drives distinctly the bacterial community in the rhizosphere of maize and common bean

IF 3.4 3区 生物学 Q1 PLANT SCIENCES
Gelza Carliane Marques Teixeira , Renato de Mello Prado , Carlos Vital Gonzalez-Porras , Patrícia Messias Ferreira , Lívia Tálita da Silva Carvalho , Sandra Mara Barbosa Rocha , Janderson Moura da Silva , Thâmara Kelly dos Santos Apollo Souza , Marcos Renan Lima Leite , Rafael de Souza Miranda , Arthur Prudêncio de Araújo Pereira , Francisco de Alcântara Neto , Ademir Sérgio Ferreira Araujo
{"title":"Silicon drives distinctly the bacterial community in the rhizosphere of maize and common bean","authors":"Gelza Carliane Marques Teixeira ,&nbsp;Renato de Mello Prado ,&nbsp;Carlos Vital Gonzalez-Porras ,&nbsp;Patrícia Messias Ferreira ,&nbsp;Lívia Tálita da Silva Carvalho ,&nbsp;Sandra Mara Barbosa Rocha ,&nbsp;Janderson Moura da Silva ,&nbsp;Thâmara Kelly dos Santos Apollo Souza ,&nbsp;Marcos Renan Lima Leite ,&nbsp;Rafael de Souza Miranda ,&nbsp;Arthur Prudêncio de Araújo Pereira ,&nbsp;Francisco de Alcântara Neto ,&nbsp;Ademir Sérgio Ferreira Araujo","doi":"10.1016/j.rhisph.2024.101008","DOIUrl":null,"url":null,"abstract":"<div><div>Silicon (Si) has been recognized as a beneficial nutrient for plants, though its effect on microbial communities within the rhizosphere remains poorly understood, particularly when comparing plant species. This study assessed the effect of Si on the bacterial community in the rhizosphere of two distinct plant species, i.e., common bean and maize, under field conditions. The experiment compared two doses of Si (0 and 12 kg ha⁻<sup>1</sup>), applied via fertigation, on the bacterial community in the rhizosphere of both species using a randomized complete block design. Soil samples from the rhizosphere were collected at the pod formation stage (R7) for common bean and the tasseling stage (V) for maize. DNA was extracted, and the V4 region of the 16S rRNA gene was sequenced using the Illumina platform. The application of Si slightly separated the bacterial communities in the rhizosphere of both plant species. While Si did not affect bacterial richness and diversity in the rhizosphere of common bean, the rhizosphere of maize showed higher bacterial richness and diversity without Si. The co-occurrence network complexity showed less variation in the rhizosphere of common bean in response to Si, whereas maize exhibited more significant differences between treatments with and without Si. The rhizosphere of maize treated with Si had a higher number of edges (32,729) and positive interactions (10,749) compared to the treatment without Si. This study demonstrated that the bacterial communities in the rhizosphere of maize and common bean respond differently to Si, with Si having a greater impact on the bacterial community in the rhizosphere of maize than in common bean.</div></div>","PeriodicalId":48589,"journal":{"name":"Rhizosphere","volume":"33 ","pages":"Article 101008"},"PeriodicalIF":3.4000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rhizosphere","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452219824001630","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Silicon (Si) has been recognized as a beneficial nutrient for plants, though its effect on microbial communities within the rhizosphere remains poorly understood, particularly when comparing plant species. This study assessed the effect of Si on the bacterial community in the rhizosphere of two distinct plant species, i.e., common bean and maize, under field conditions. The experiment compared two doses of Si (0 and 12 kg ha⁻1), applied via fertigation, on the bacterial community in the rhizosphere of both species using a randomized complete block design. Soil samples from the rhizosphere were collected at the pod formation stage (R7) for common bean and the tasseling stage (V) for maize. DNA was extracted, and the V4 region of the 16S rRNA gene was sequenced using the Illumina platform. The application of Si slightly separated the bacterial communities in the rhizosphere of both plant species. While Si did not affect bacterial richness and diversity in the rhizosphere of common bean, the rhizosphere of maize showed higher bacterial richness and diversity without Si. The co-occurrence network complexity showed less variation in the rhizosphere of common bean in response to Si, whereas maize exhibited more significant differences between treatments with and without Si. The rhizosphere of maize treated with Si had a higher number of edges (32,729) and positive interactions (10,749) compared to the treatment without Si. This study demonstrated that the bacterial communities in the rhizosphere of maize and common bean respond differently to Si, with Si having a greater impact on the bacterial community in the rhizosphere of maize than in common bean.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Rhizosphere
Rhizosphere Agricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
5.70
自引率
8.10%
发文量
155
审稿时长
29 days
期刊介绍: Rhizosphere aims to advance the frontier of our understanding of plant-soil interactions. Rhizosphere is a multidisciplinary journal that publishes research on the interactions between plant roots, soil organisms, nutrients, and water. Except carbon fixation by photosynthesis, plants obtain all other elements primarily from soil through roots. We are beginning to understand how communications at the rhizosphere, with soil organisms and other plant species, affect root exudates and nutrient uptake. This rapidly evolving subject utilizes molecular biology and genomic tools, food web or community structure manipulations, high performance liquid chromatography, isotopic analysis, diverse spectroscopic analytics, tomography and other microscopy, complex statistical and modeling tools.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信