Synergetic catalytic effects by strong metal–support interaction for efficient electrocatalysis

IF 42.9 Q1 ELECTROCHEMISTRY
Xue Teng , Di Si , Lisong Chen , Jianlin Shi
{"title":"Synergetic catalytic effects by strong metal–support interaction for efficient electrocatalysis","authors":"Xue Teng ,&nbsp;Di Si ,&nbsp;Lisong Chen ,&nbsp;Jianlin Shi","doi":"10.1016/j.esci.2024.100272","DOIUrl":null,"url":null,"abstract":"<div><div>Strong metal–support interaction (SMSI), namely the strong electronic and structural interaction between metal nanoparticles and supports, one of the most typical synergetic catalytic effects in composite catalysts, has been found critically important in the design of catalyst for thermocatalysis in the past. Recently, however, important and great progress of SMSI-based synergetic effects has been made in electrocatalysis, such as electrocatalyst design and electrocatalytic mechanism investigations. To better understand the nature of the synergetic effect assisting the further development of electrocatalysts, a comprehensive and in-depth overview highlighting and discussing the recent advances of SMSI in electrocatalysis is necessary and highly desirable but still absent. Herein, this review firstly presents various strategies of designing and constructing composite catalysts featuring SMSI. Further from the perspectives of electrocatalysis, the characterization techniques towards the electron structure, local interfacial and morphological features and active sites for SMSI-based electrocatalysts, have been summarized in detail. Importantly, the recent advances in the design of single- and bi-functional electrocatalysts featuring SMSI-based synergetic catalytic effects, and the key roles of SMSI during the electrocatalytic reactions are emphasized. Finally, the challenges and prospects are discussed to highlight the key remaining issues in the future development of SMSI-based electrocatalysts.</div></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"4 6","pages":"Article 100272"},"PeriodicalIF":42.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eScience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667141724000569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Strong metal–support interaction (SMSI), namely the strong electronic and structural interaction between metal nanoparticles and supports, one of the most typical synergetic catalytic effects in composite catalysts, has been found critically important in the design of catalyst for thermocatalysis in the past. Recently, however, important and great progress of SMSI-based synergetic effects has been made in electrocatalysis, such as electrocatalyst design and electrocatalytic mechanism investigations. To better understand the nature of the synergetic effect assisting the further development of electrocatalysts, a comprehensive and in-depth overview highlighting and discussing the recent advances of SMSI in electrocatalysis is necessary and highly desirable but still absent. Herein, this review firstly presents various strategies of designing and constructing composite catalysts featuring SMSI. Further from the perspectives of electrocatalysis, the characterization techniques towards the electron structure, local interfacial and morphological features and active sites for SMSI-based electrocatalysts, have been summarized in detail. Importantly, the recent advances in the design of single- and bi-functional electrocatalysts featuring SMSI-based synergetic catalytic effects, and the key roles of SMSI during the electrocatalytic reactions are emphasized. Finally, the challenges and prospects are discussed to highlight the key remaining issues in the future development of SMSI-based electrocatalysts.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
33.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信