Decarbonizing Ukraine's electricity sector in 2035: Scenario analysis

IF 5.8 Q2 ENERGY & FUELS
Iryna Sotnyk , Jan-Philipp Sasse , Evelina Trutnevyte
{"title":"Decarbonizing Ukraine's electricity sector in 2035: Scenario analysis","authors":"Iryna Sotnyk ,&nbsp;Jan-Philipp Sasse ,&nbsp;Evelina Trutnevyte","doi":"10.1016/j.egycc.2024.100170","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we considered the case of decarbonizing Ukraine's electricity sector that has significant import dependence, high energy and carbon intensity, and an unprecedented destruction of electricity facilities due to ongoing war. Using a newly built UKRAINE-EXPANSE model, which covers 24 Ukrainian oblasts (regions) and five neighboring countries at high temporal and spatial resolution, we offered four cost-optimal scenarios for the national electricity sector in 2035. Considering the targets of the current National Energy and Climate Plan and the Updated Nationally Determined Contribution of Ukraine to the Paris Agreement, we analyzed the structure of the installed capacities, annual electricity generation, storage, transmission, and trade with neighboring countries and calculated sustainability impacts (greenhouse gas and air pollution emissions, employment, land use, and total system costs). We showed that in 2035, the undamaged total installed capacity (as of May 2024) should be increased by 2.7–3.2 times while supplying up to 16.3 % higher electricity demand compared to the pre-war period. Nuclear and gas power would still remain the primary electricity sources in 2035, supported by intensive growth in wind power, pumped hydropower storage, bioenergy and expansion of transmission grids. Implementing environmentally friendly scenarios with 30 % of renewable generation and/or no hard coal power would require only 5 to 13 % higher total system costs compared to the least cost scenario, which could be socially and politically acceptable.</div></div>","PeriodicalId":72914,"journal":{"name":"Energy and climate change","volume":"6 ","pages":"Article 100170"},"PeriodicalIF":5.8000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and climate change","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666278724000461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we considered the case of decarbonizing Ukraine's electricity sector that has significant import dependence, high energy and carbon intensity, and an unprecedented destruction of electricity facilities due to ongoing war. Using a newly built UKRAINE-EXPANSE model, which covers 24 Ukrainian oblasts (regions) and five neighboring countries at high temporal and spatial resolution, we offered four cost-optimal scenarios for the national electricity sector in 2035. Considering the targets of the current National Energy and Climate Plan and the Updated Nationally Determined Contribution of Ukraine to the Paris Agreement, we analyzed the structure of the installed capacities, annual electricity generation, storage, transmission, and trade with neighboring countries and calculated sustainability impacts (greenhouse gas and air pollution emissions, employment, land use, and total system costs). We showed that in 2035, the undamaged total installed capacity (as of May 2024) should be increased by 2.7–3.2 times while supplying up to 16.3 % higher electricity demand compared to the pre-war period. Nuclear and gas power would still remain the primary electricity sources in 2035, supported by intensive growth in wind power, pumped hydropower storage, bioenergy and expansion of transmission grids. Implementing environmentally friendly scenarios with 30 % of renewable generation and/or no hard coal power would require only 5 to 13 % higher total system costs compared to the least cost scenario, which could be socially and politically acceptable.
2035年乌克兰电力部门脱碳:情景分析
在本研究中,我们考虑了乌克兰电力部门脱碳的情况,该部门具有显著的进口依赖,高能源和碳强度,以及由于持续的战争而对电力设施造成前所未有的破坏。基于乌克兰24个州(地区)和5个邻国在高时空分辨率下的新建立的乌克兰-广阔模型,我们为2035年国家电力部门提供了4种成本最优情景。考虑到当前国家能源和气候计划的目标以及乌克兰对《巴黎协定》最新的国家自主贡献,我们分析了装机容量、年发电量、储能、输电和与邻国贸易的结构,并计算了可持续性影响(温室气体和空气污染排放、就业、土地利用和总系统成本)。我们表明,到2035年,未损坏的总装机容量(截至2024年5月)应增加2.7-3.2倍,同时提供的电力需求比战前高出16.3%。到2035年,在风力发电、抽水蓄能、生物能源的密集增长和输电网扩张的支持下,核能和天然气发电仍将是主要的电力来源。实现30%的可再生能源发电和/或不使用硬煤发电的环境友好型方案,与成本最低的方案相比,只需要增加5%到13%的总系统成本,这在社会和政治上都是可以接受的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy and climate change
Energy and climate change Global and Planetary Change, Renewable Energy, Sustainability and the Environment, Management, Monitoring, Policy and Law
CiteScore
7.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信