A spatiotemporal optimization engine for prescribed burning in the Southeast US

IF 5.8 2区 环境科学与生态学 Q1 ECOLOGY
Reetam Majumder , Adam J. Terando , J. Kevin Hiers , Jaime A. Collazo , Brian J. Reich
{"title":"A spatiotemporal optimization engine for prescribed burning in the Southeast US","authors":"Reetam Majumder ,&nbsp;Adam J. Terando ,&nbsp;J. Kevin Hiers ,&nbsp;Jaime A. Collazo ,&nbsp;Brian J. Reich","doi":"10.1016/j.ecoinf.2024.102956","DOIUrl":null,"url":null,"abstract":"<div><div>Many ecosystems in the Southeast US are dependent upon frequent low-intensity surface fires to sustain native biodiversity, ecosystem services, and endangered species populations. Today, landscape-scale prescribed fire is required to manage these systems for conservation objectives and to mitigate wildland fire risk. Successful application of prescribed fire in this region requires careful planning and assessment of the risks and tradeoffs involved when deciding whether or not to conduct a burn. Many of these risks are closely tied to ambient environmental conditions and are reflected in sets of ‘prescription’ parameters that define safe and effective operating conditions to meet objectives or regulatory requirements. To facilitate effective decision making and acknowledge growing uncertainties related to climate change effects on wildland fire operations, we developed a spatiotemporal optimization engine to identify near-term optimal burning opportunities for prescribed fire implementation. By mining historical 3-day numerical weather forecasts and observation-based weather data for 2015–2021, we have developed a Bayesian hierarchical model for forecast verification that provides calibrated daily weather forecasts and joint uncertainty estimates on meteorological variables of interest, with the latter serving as a measure of risk associated with prescribed fire activities. Burn allocation decisions are then optimized by considering this risk jointly with the utility of burning a particular habitat parcel. The initial iteration of the optimization engine is demonstrated through a case study of short-term meteorological conditions for the Eglin Air Force Base, located in Florida, USA. Results indicate agreement between the optimization engine and the observed past decision-making, with the largest divergences likely arising primarily from differences between utility functions presumed important and used to develop the optimization engine versus the true utility functions driving management behavior in practice.</div></div>","PeriodicalId":51024,"journal":{"name":"Ecological Informatics","volume":"85 ","pages":"Article 102956"},"PeriodicalIF":5.8000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Informatics","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574954124004989","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Many ecosystems in the Southeast US are dependent upon frequent low-intensity surface fires to sustain native biodiversity, ecosystem services, and endangered species populations. Today, landscape-scale prescribed fire is required to manage these systems for conservation objectives and to mitigate wildland fire risk. Successful application of prescribed fire in this region requires careful planning and assessment of the risks and tradeoffs involved when deciding whether or not to conduct a burn. Many of these risks are closely tied to ambient environmental conditions and are reflected in sets of ‘prescription’ parameters that define safe and effective operating conditions to meet objectives or regulatory requirements. To facilitate effective decision making and acknowledge growing uncertainties related to climate change effects on wildland fire operations, we developed a spatiotemporal optimization engine to identify near-term optimal burning opportunities for prescribed fire implementation. By mining historical 3-day numerical weather forecasts and observation-based weather data for 2015–2021, we have developed a Bayesian hierarchical model for forecast verification that provides calibrated daily weather forecasts and joint uncertainty estimates on meteorological variables of interest, with the latter serving as a measure of risk associated with prescribed fire activities. Burn allocation decisions are then optimized by considering this risk jointly with the utility of burning a particular habitat parcel. The initial iteration of the optimization engine is demonstrated through a case study of short-term meteorological conditions for the Eglin Air Force Base, located in Florida, USA. Results indicate agreement between the optimization engine and the observed past decision-making, with the largest divergences likely arising primarily from differences between utility functions presumed important and used to develop the optimization engine versus the true utility functions driving management behavior in practice.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ecological Informatics
Ecological Informatics 环境科学-生态学
CiteScore
8.30
自引率
11.80%
发文量
346
审稿时长
46 days
期刊介绍: The journal Ecological Informatics is devoted to the publication of high quality, peer-reviewed articles on all aspects of computational ecology, data science and biogeography. The scope of the journal takes into account the data-intensive nature of ecology, the growing capacity of information technology to access, harness and leverage complex data as well as the critical need for informing sustainable management in view of global environmental and climate change. The nature of the journal is interdisciplinary at the crossover between ecology and informatics. It focuses on novel concepts and techniques for image- and genome-based monitoring and interpretation, sensor- and multimedia-based data acquisition, internet-based data archiving and sharing, data assimilation, modelling and prediction of ecological data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信