Climate time series variability analysis of Islamabad Capital Territory using fractal dimension and Hurst exponent methods

IF 1.8 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS
Ali Khan , Shahid Hussain , Ahmed Bakhet , Afshan Anwer , S.M. Murshid Raza , Sajjad Ali , Mohammed Zakarya
{"title":"Climate time series variability analysis of Islamabad Capital Territory using fractal dimension and Hurst exponent methods","authors":"Ali Khan ,&nbsp;Shahid Hussain ,&nbsp;Ahmed Bakhet ,&nbsp;Afshan Anwer ,&nbsp;S.M. Murshid Raza ,&nbsp;Sajjad Ali ,&nbsp;Mohammed Zakarya","doi":"10.1016/j.jastp.2024.106406","DOIUrl":null,"url":null,"abstract":"<div><div>This study is an attempt to examine variability of climatic parameters at local scale, Islamabad Capital Territory (ICT). Climate change can affect temperature trends and precipitation patterns, horticultural activity, agricultural productivity, underground water level, portable water availability, and infrastructure.To assess the impact of climate change of Islamabad Capital Territory, the data of precipitation, minimum and maximum temperatures were obtained for the period from 1983 to 2022 from Pakistan Metrological Department (PMD). Fractal dimension <em>D</em> and Hurt exponent <em>H</em> methods were employed to estimate the monthly maximum and minimum temperatures, and precipitation of the study area. The data was portioned into 4 subsets. Rescaled range analysis method was applied on the datasets to compute values of Hurst exponent and fractal dimension. The results obtained show Brownian random and persistent tendencies, correspondingly. On the other hand, the period from 2013 to 2022 shows anti-persistent trend for H and random trend during (2013–2022) for D, respectively. The time series showing persistent results contain the long-term memory. When a time series shows random Brownian behaviour, thenthere will be no any extended long-term memory. Rescaled range analysis (<em>R/S</em>)method was employed to compute fractal dimensions show consistent outcomes, reveal small fluctuation in the local behaviour of minimum temperatures.Whereas, Hurst exponent values of maximum temperatures show random behavior i.e. there exists no correlation. The Hurst exponents computed confirm persistent results for precipitation pattern. Likewise, the computed values of fractal dimensions also show persistent results. Thus, the precipitation pattern shows cyclic behaviour, i.e. the precipitation time series retain long-run memory. Finally, from the persistent behavior of time series, one would infer that there will bean extended time effect on the local precipitation pattern. Python software was used to perform computations.</div></div>","PeriodicalId":15096,"journal":{"name":"Journal of Atmospheric and Solar-Terrestrial Physics","volume":"267 ","pages":"Article 106406"},"PeriodicalIF":1.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric and Solar-Terrestrial Physics","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364682624002347","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study is an attempt to examine variability of climatic parameters at local scale, Islamabad Capital Territory (ICT). Climate change can affect temperature trends and precipitation patterns, horticultural activity, agricultural productivity, underground water level, portable water availability, and infrastructure.To assess the impact of climate change of Islamabad Capital Territory, the data of precipitation, minimum and maximum temperatures were obtained for the period from 1983 to 2022 from Pakistan Metrological Department (PMD). Fractal dimension D and Hurt exponent H methods were employed to estimate the monthly maximum and minimum temperatures, and precipitation of the study area. The data was portioned into 4 subsets. Rescaled range analysis method was applied on the datasets to compute values of Hurst exponent and fractal dimension. The results obtained show Brownian random and persistent tendencies, correspondingly. On the other hand, the period from 2013 to 2022 shows anti-persistent trend for H and random trend during (2013–2022) for D, respectively. The time series showing persistent results contain the long-term memory. When a time series shows random Brownian behaviour, thenthere will be no any extended long-term memory. Rescaled range analysis (R/S)method was employed to compute fractal dimensions show consistent outcomes, reveal small fluctuation in the local behaviour of minimum temperatures.Whereas, Hurst exponent values of maximum temperatures show random behavior i.e. there exists no correlation. The Hurst exponents computed confirm persistent results for precipitation pattern. Likewise, the computed values of fractal dimensions also show persistent results. Thus, the precipitation pattern shows cyclic behaviour, i.e. the precipitation time series retain long-run memory. Finally, from the persistent behavior of time series, one would infer that there will bean extended time effect on the local precipitation pattern. Python software was used to perform computations.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Atmospheric and Solar-Terrestrial Physics
Journal of Atmospheric and Solar-Terrestrial Physics 地学-地球化学与地球物理
CiteScore
4.10
自引率
5.30%
发文量
95
审稿时长
6 months
期刊介绍: The Journal of Atmospheric and Solar-Terrestrial Physics (JASTP) is an international journal concerned with the inter-disciplinary science of the Earth''s atmospheric and space environment, especially the highly varied and highly variable physical phenomena that occur in this natural laboratory and the processes that couple them. The journal covers the physical processes operating in the troposphere, stratosphere, mesosphere, thermosphere, ionosphere, magnetosphere, the Sun, interplanetary medium, and heliosphere. Phenomena occurring in other "spheres", solar influences on climate, and supporting laboratory measurements are also considered. The journal deals especially with the coupling between the different regions. Solar flares, coronal mass ejections, and other energetic events on the Sun create interesting and important perturbations in the near-Earth space environment. The physics of such "space weather" is central to the Journal of Atmospheric and Solar-Terrestrial Physics and the journal welcomes papers that lead in the direction of a predictive understanding of the coupled system. Regarding the upper atmosphere, the subjects of aeronomy, geomagnetism and geoelectricity, auroral phenomena, radio wave propagation, and plasma instabilities, are examples within the broad field of solar-terrestrial physics which emphasise the energy exchange between the solar wind, the magnetospheric and ionospheric plasmas, and the neutral gas. In the lower atmosphere, topics covered range from mesoscale to global scale dynamics, to atmospheric electricity, lightning and its effects, and to anthropogenic changes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信