{"title":"Experimental and computational approaches to optimizing the development of NFs reinforced polymer composite: A review of optimization strategies","authors":"Olajesu Favor Olanrewaju , Justus Uchenna Anaele , Sodiq Abiodun Kareem","doi":"10.1016/j.susmat.2025.e01259","DOIUrl":null,"url":null,"abstract":"<div><div>Due to increased environmental campaigns, natural fibers (NF) are receiving much interest as cost-efficient substitutes for synthetic fibers for engineering applications because they are eco-friendly, lightweight, and have excellent mechanical strength. However, NF-reinforced polymer composites (NFRPCs) sourced from plants and animals are hydrophilic, primarily incompatible with hydrophobic thermoplastics, and prone to moisture damage. To counter these challenges, there has been considerable attention to different optimization strategies for improving the properties of NFRPCs. This review encompasses the properties of various NFs (plants and animals) and the optimization strategies for enhancing interfacial shear strength and mechanical, fracture, and water absorption behavior. The review also covers the optimization strategies for improving the thermal, flame retardancy, temperature, and strain rate-dependent behavior of NFRPCs. Additionally, this review discussed optimization computational approaches, existing gaps in literature, and potential future directions for optimizing NFRPC development.</div></div>","PeriodicalId":22097,"journal":{"name":"Sustainable Materials and Technologies","volume":"43 ","pages":"Article e01259"},"PeriodicalIF":8.6000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Materials and Technologies","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214993725000272","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Due to increased environmental campaigns, natural fibers (NF) are receiving much interest as cost-efficient substitutes for synthetic fibers for engineering applications because they are eco-friendly, lightweight, and have excellent mechanical strength. However, NF-reinforced polymer composites (NFRPCs) sourced from plants and animals are hydrophilic, primarily incompatible with hydrophobic thermoplastics, and prone to moisture damage. To counter these challenges, there has been considerable attention to different optimization strategies for improving the properties of NFRPCs. This review encompasses the properties of various NFs (plants and animals) and the optimization strategies for enhancing interfacial shear strength and mechanical, fracture, and water absorption behavior. The review also covers the optimization strategies for improving the thermal, flame retardancy, temperature, and strain rate-dependent behavior of NFRPCs. Additionally, this review discussed optimization computational approaches, existing gaps in literature, and potential future directions for optimizing NFRPC development.
期刊介绍:
Sustainable Materials and Technologies (SM&T), an international, cross-disciplinary, fully open access journal published by Elsevier, focuses on original full-length research articles and reviews. It covers applied or fundamental science of nano-, micro-, meso-, and macro-scale aspects of materials and technologies for sustainable development. SM&T gives special attention to contributions that bridge the knowledge gap between materials and system designs.