Revolutionizing mineral recovery: The untapped potential of non-explosive expansive agents for eco-friendly mining

IF 8.6 2区 工程技术 Q1 ENERGY & FUELS
T. Kannangara, P.G. Ranjith
{"title":"Revolutionizing mineral recovery: The untapped potential of non-explosive expansive agents for eco-friendly mining","authors":"T. Kannangara,&nbsp;P.G. Ranjith","doi":"10.1016/j.susmat.2025.e01238","DOIUrl":null,"url":null,"abstract":"<div><div>The growing global demand for minerals, coupled with the environmental and energy inefficiencies of traditional mining, underscores the need for more sustainable alternatives. In-situ Mineral Recovery (IMR) offers such a solution by extracting minerals directly from deep ore deposits. However, its widespread adoption is challenged by environmental concerns, particularly groundwater contamination and host rock permeability. This study investigates the use of a Slow-Releasing Energy Material Agent (SREMA), a non-explosive expansive material, to address these challenges by enhancing rock preconditioning in IMR. We analyze the hydration dynamics, admixture effects, fracture initiation mechanisms, applications and limitations of SREMA, demonstrating its ability to control fracture propagation and improve rock fracturing efficiency. Our findings suggest that optimizing factors like water content, chemical composition and injection well design parameters can further enhance SREMA's performance. The study emphasizes the importance of developing SREMA with specific properties tailored for IMR, including appropriate viscosity, flowability, and water resistance, to ensure an interconnected fracture network in deep underground conditions. Furthermore, it underscores SREMA's potential to reduce the environmental impact of traditional rock preconditioning methods and contribute to more sustainable mining practices while also identifying areas for future research to refine SREMA efficacy and explore novel applications, thereby facilitating more eco-friendly and efficient mineral recovery processes.</div></div>","PeriodicalId":22097,"journal":{"name":"Sustainable Materials and Technologies","volume":"43 ","pages":"Article e01238"},"PeriodicalIF":8.6000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Materials and Technologies","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214993725000065","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The growing global demand for minerals, coupled with the environmental and energy inefficiencies of traditional mining, underscores the need for more sustainable alternatives. In-situ Mineral Recovery (IMR) offers such a solution by extracting minerals directly from deep ore deposits. However, its widespread adoption is challenged by environmental concerns, particularly groundwater contamination and host rock permeability. This study investigates the use of a Slow-Releasing Energy Material Agent (SREMA), a non-explosive expansive material, to address these challenges by enhancing rock preconditioning in IMR. We analyze the hydration dynamics, admixture effects, fracture initiation mechanisms, applications and limitations of SREMA, demonstrating its ability to control fracture propagation and improve rock fracturing efficiency. Our findings suggest that optimizing factors like water content, chemical composition and injection well design parameters can further enhance SREMA's performance. The study emphasizes the importance of developing SREMA with specific properties tailored for IMR, including appropriate viscosity, flowability, and water resistance, to ensure an interconnected fracture network in deep underground conditions. Furthermore, it underscores SREMA's potential to reduce the environmental impact of traditional rock preconditioning methods and contribute to more sustainable mining practices while also identifying areas for future research to refine SREMA efficacy and explore novel applications, thereby facilitating more eco-friendly and efficient mineral recovery processes.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sustainable Materials and Technologies
Sustainable Materials and Technologies Energy-Renewable Energy, Sustainability and the Environment
CiteScore
13.40
自引率
4.20%
发文量
158
审稿时长
45 days
期刊介绍: Sustainable Materials and Technologies (SM&T), an international, cross-disciplinary, fully open access journal published by Elsevier, focuses on original full-length research articles and reviews. It covers applied or fundamental science of nano-, micro-, meso-, and macro-scale aspects of materials and technologies for sustainable development. SM&T gives special attention to contributions that bridge the knowledge gap between materials and system designs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信