Bilayer interface engineering through 2D/3D perovskite and surface dipole for inverted perovskite solar modules

IF 42.9 Q1 ELECTROCHEMISTRY
Jiarong Wang , Leyu Bi , Xiaofeng Huang , Qifan Feng , Ming Liu , Mingqian Chen , Yidan An , Wenlin Jiang , Francis R. Lin , Qiang Fu , Alex K.-Y. Jen
{"title":"Bilayer interface engineering through 2D/3D perovskite and surface dipole for inverted perovskite solar modules","authors":"Jiarong Wang ,&nbsp;Leyu Bi ,&nbsp;Xiaofeng Huang ,&nbsp;Qifan Feng ,&nbsp;Ming Liu ,&nbsp;Mingqian Chen ,&nbsp;Yidan An ,&nbsp;Wenlin Jiang ,&nbsp;Francis R. Lin ,&nbsp;Qiang Fu ,&nbsp;Alex K.-Y. Jen","doi":"10.1016/j.esci.2024.100308","DOIUrl":null,"url":null,"abstract":"<div><div>The persistency of passivation and scalable uniformity are vital issues that limit the improvement of performance and stability of large-area perovskite solar modules (PSMs). Here, we design a bilayer interface engineering strategy that takes advantage of the stability and passivation ability of low-dimensional perovskite and the dipole layer. Introducing phenethylammonium iodide (PEAI) can form 2D/3D heterojunctions on the perovskite surface and effectively passivate defects of perovskite film. Interestingly, the upper piperazinium iodide (PI) layer can still form surface dipoles on the 2D/3D perovskite surface to optimize energy-level alignment. Moreover, the bilayer interface engineering enables large-area perovskite films with uniform surface morphology, lower trap-state density and stability against environmental stress factors. The final devices achieved a small-area PCE of 25.20% and a large-area (1 ​cm<sup>2</sup>) PCE of 23.96%. A perovskite mini-module (5 ​× ​5 ​cm<sup>2</sup> with an active area of 14.28 ​cm<sup>2</sup>) could also be fabricated to achieve a PCE of 23.19%, ranking it among the highest for inverted PSMs. Additionally, the device could retain over 93% of its initial efficiency after MPP tracking at 45 ​°C for 1280 ​h. This study successfully demonstrates a bilayer interface engineering with respective functions, offering valuable insights for producing efficient and stable large-area PSCs.</div></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"4 6","pages":"Article 100308"},"PeriodicalIF":42.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eScience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667141724001010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

The persistency of passivation and scalable uniformity are vital issues that limit the improvement of performance and stability of large-area perovskite solar modules (PSMs). Here, we design a bilayer interface engineering strategy that takes advantage of the stability and passivation ability of low-dimensional perovskite and the dipole layer. Introducing phenethylammonium iodide (PEAI) can form 2D/3D heterojunctions on the perovskite surface and effectively passivate defects of perovskite film. Interestingly, the upper piperazinium iodide (PI) layer can still form surface dipoles on the 2D/3D perovskite surface to optimize energy-level alignment. Moreover, the bilayer interface engineering enables large-area perovskite films with uniform surface morphology, lower trap-state density and stability against environmental stress factors. The final devices achieved a small-area PCE of 25.20% and a large-area (1 ​cm2) PCE of 23.96%. A perovskite mini-module (5 ​× ​5 ​cm2 with an active area of 14.28 ​cm2) could also be fabricated to achieve a PCE of 23.19%, ranking it among the highest for inverted PSMs. Additionally, the device could retain over 93% of its initial efficiency after MPP tracking at 45 ​°C for 1280 ​h. This study successfully demonstrates a bilayer interface engineering with respective functions, offering valuable insights for producing efficient and stable large-area PSCs.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
33.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信