Insights into microscopic oil occurrence characteristics in shales from the Paleogene Funing Formation in Subei Basin, China

IF 6 1区 工程技术 Q2 ENERGY & FUELS
Jun-Jie Wang , Peng-Fei Zhang , Shuang-Fang Lu , Zi-Zhi Lin , Wen-Biao Li , Jun-Jian Zhang , Wei-Zheng Gao , Neng-Wu Zhou , Guo-Hui Chen , Ya-Jie Yin , Han Wu
{"title":"Insights into microscopic oil occurrence characteristics in shales from the Paleogene Funing Formation in Subei Basin, China","authors":"Jun-Jie Wang ,&nbsp;Peng-Fei Zhang ,&nbsp;Shuang-Fang Lu ,&nbsp;Zi-Zhi Lin ,&nbsp;Wen-Biao Li ,&nbsp;Jun-Jian Zhang ,&nbsp;Wei-Zheng Gao ,&nbsp;Neng-Wu Zhou ,&nbsp;Guo-Hui Chen ,&nbsp;Ya-Jie Yin ,&nbsp;Han Wu","doi":"10.1016/j.petsci.2024.07.025","DOIUrl":null,"url":null,"abstract":"<div><div>The microscopic occurrence characteristics primarily constrain the enrichment and mobility of shale oil. This study collected the lacustrine shales from the Palaeogene Funing Formation in the Gaoyou Sag, Subei Basin. Conventional and multistage Rock-Eval, scanning electron microscopy, and nuclear magnetic resonance (NMR) <em>T</em><sub>1</sub>–<em>T</em><sub>2</sub> were performed to analyze the contents and occurrence characteristics of shale oil. Low-temperature nitrogen adsorption-desorption (LTNA/D) experiments were conducted on the shales before and after extraction. The relationships between shale oil occurrence with organic matter and pore structures were then discussed. Predominantly, the shale oil in the Funing Formation is found within fractures, with secondary occurrences in interparticle pores linked to brittle minerals and sizeable intraparticle pores associated with clay minerals. The selected shales can be categorized into two types based on the nitrogen isotherms. Type A shales are characterized by high contents of felsic and calcareous minerals but low clay minerals, with larger TOC and shale oil values. Conversely, Type B shales are marked by abundant clay minerals but diminished TOC and shale oil contents. The lower BET specific surface area (SSA), larger average pore diameter, and simpler pore surfaces and pore structures lead to the Type A shales being more conducive to shale oil enrichment and mobility. Shale oil content is predominantly governed by the abundance of organic matter, while an overabundance of organic matter typically equates to a reduced ratio of free oil and diminished fluidity. The BET SSA, volumes of pores less than 25 and 100 nm at extracted state all correlate negatively with total and adsorbed oil contents but display no correlation with free oil, while they have positive relationships with capillary-bound water. Consequently, pore water is mainly saturated in micropores (&lt;25 nm) and minipores (25–100 nm), as well as adsorbed oil, while free oil, i.e., bound and movable oil, primarily exists in mesopores (100–1000 nm) and macropores (&gt;1000 nm). These findings may enhance the understanding of the microscopic occurrence characteristics of shale oil and will contribute to guide resource estimation and shale oil sweet spot exploitation in the Gaoyou Sag, Subei Basin.</div></div>","PeriodicalId":19938,"journal":{"name":"Petroleum Science","volume":"22 1","pages":"Pages 55-75"},"PeriodicalIF":6.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1995822624002097","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The microscopic occurrence characteristics primarily constrain the enrichment and mobility of shale oil. This study collected the lacustrine shales from the Palaeogene Funing Formation in the Gaoyou Sag, Subei Basin. Conventional and multistage Rock-Eval, scanning electron microscopy, and nuclear magnetic resonance (NMR) T1T2 were performed to analyze the contents and occurrence characteristics of shale oil. Low-temperature nitrogen adsorption-desorption (LTNA/D) experiments were conducted on the shales before and after extraction. The relationships between shale oil occurrence with organic matter and pore structures were then discussed. Predominantly, the shale oil in the Funing Formation is found within fractures, with secondary occurrences in interparticle pores linked to brittle minerals and sizeable intraparticle pores associated with clay minerals. The selected shales can be categorized into two types based on the nitrogen isotherms. Type A shales are characterized by high contents of felsic and calcareous minerals but low clay minerals, with larger TOC and shale oil values. Conversely, Type B shales are marked by abundant clay minerals but diminished TOC and shale oil contents. The lower BET specific surface area (SSA), larger average pore diameter, and simpler pore surfaces and pore structures lead to the Type A shales being more conducive to shale oil enrichment and mobility. Shale oil content is predominantly governed by the abundance of organic matter, while an overabundance of organic matter typically equates to a reduced ratio of free oil and diminished fluidity. The BET SSA, volumes of pores less than 25 and 100 nm at extracted state all correlate negatively with total and adsorbed oil contents but display no correlation with free oil, while they have positive relationships with capillary-bound water. Consequently, pore water is mainly saturated in micropores (<25 nm) and minipores (25–100 nm), as well as adsorbed oil, while free oil, i.e., bound and movable oil, primarily exists in mesopores (100–1000 nm) and macropores (>1000 nm). These findings may enhance the understanding of the microscopic occurrence characteristics of shale oil and will contribute to guide resource estimation and shale oil sweet spot exploitation in the Gaoyou Sag, Subei Basin.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Petroleum Science
Petroleum Science 地学-地球化学与地球物理
CiteScore
7.70
自引率
16.10%
发文量
311
审稿时长
63 days
期刊介绍: Petroleum Science is the only English journal in China on petroleum science and technology that is intended for professionals engaged in petroleum science research and technical applications all over the world, as well as the managerial personnel of oil companies. It covers petroleum geology, petroleum geophysics, petroleum engineering, petrochemistry & chemical engineering, petroleum mechanics, and economic management. It aims to introduce the latest results in oil industry research in China, promote cooperation in petroleum science research between China and the rest of the world, and build a bridge for scientific communication between China and the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信