Pinbo Huang , Changhao Wang , Weirui Zhang , Zihao Ni , Rufeng You
{"title":"Monitoring the repair process of internal microdamages in thermoplastic composites using optical coherence tomography","authors":"Pinbo Huang , Changhao Wang , Weirui Zhang , Zihao Ni , Rufeng You","doi":"10.1016/j.polymertesting.2025.108689","DOIUrl":null,"url":null,"abstract":"<div><div>The reliability of composite structures critically depends on effective damage repair. This study employs optical coherence tomography (OCT), a non-destructive imaging technique capable of generating cross-sectional images of translucent materials, to investigate the repair of early-stage microdamage in thermoplastic composites. Using electrical resistance heating, the healing of a microscale void in a carbon fiber-reinforced ethylene-vinyl acetate (EVA) polymer sample was monitored through OCT-derived scattered light intensity and phase difference measurements. Firstly, the void healing process was observed using a self-developed OCT system. Repair parameters, including initiation and completion times, were then estimated from the scattered light intensity changes in the defective region. Additionally, phase-contrast imaging was utilized to analyze phase difference patterns, enabling the computation of displacement fields across the defective cross-section and providing quantitative insights into the healing dynamics. The findings demonstrate the efficacy of OCT in monitoring and characterizing the repair processes of composite materials, highlighting its potential as a valuable tool in structural health assessment.</div></div>","PeriodicalId":20628,"journal":{"name":"Polymer Testing","volume":"143 ","pages":"Article 108689"},"PeriodicalIF":5.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Testing","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142941825000030","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
The reliability of composite structures critically depends on effective damage repair. This study employs optical coherence tomography (OCT), a non-destructive imaging technique capable of generating cross-sectional images of translucent materials, to investigate the repair of early-stage microdamage in thermoplastic composites. Using electrical resistance heating, the healing of a microscale void in a carbon fiber-reinforced ethylene-vinyl acetate (EVA) polymer sample was monitored through OCT-derived scattered light intensity and phase difference measurements. Firstly, the void healing process was observed using a self-developed OCT system. Repair parameters, including initiation and completion times, were then estimated from the scattered light intensity changes in the defective region. Additionally, phase-contrast imaging was utilized to analyze phase difference patterns, enabling the computation of displacement fields across the defective cross-section and providing quantitative insights into the healing dynamics. The findings demonstrate the efficacy of OCT in monitoring and characterizing the repair processes of composite materials, highlighting its potential as a valuable tool in structural health assessment.
期刊介绍:
Polymer Testing focuses on the testing, analysis and characterization of polymer materials, including both synthetic and natural or biobased polymers. Novel testing methods and the testing of novel polymeric materials in bulk, solution and dispersion is covered. In addition, we welcome the submission of the testing of polymeric materials for a wide range of applications and industrial products as well as nanoscale characterization.
The scope includes but is not limited to the following main topics:
Novel testing methods and Chemical analysis
• mechanical, thermal, electrical, chemical, imaging, spectroscopy, scattering and rheology
Physical properties and behaviour of novel polymer systems
• nanoscale properties, morphology, transport properties
Degradation and recycling of polymeric materials when combined with novel testing or characterization methods
• degradation, biodegradation, ageing and fire retardancy
Modelling and Simulation work will be only considered when it is linked to new or previously published experimental results.