Sergio Fuentes del Toro , Jorge Crespo-Sanchez , Jorge Ayllón , Alvaro Rodríguez-Prieto , Ana María Camacho
{"title":"Mechanical performance of 3D-printed TPU auxetic structures for energy absorption applications","authors":"Sergio Fuentes del Toro , Jorge Crespo-Sanchez , Jorge Ayllón , Alvaro Rodríguez-Prieto , Ana María Camacho","doi":"10.1016/j.polymertesting.2024.108669","DOIUrl":null,"url":null,"abstract":"<div><div>The emergence of metamaterials and layered structures obtained through additive manufacturing (AM) techniques opens a new paradigm of mechanical properties for advanced applications that need to be explored. This study investigates the mechanical behavior of 3D-printed auxetic structures, fabricated from thermoplastic polyurethane (TPU), under tensile and compressive loads. Utilizing fused deposition modeling (MEX), we examined the influence of printing direction on the anisotropic mechanical properties of TPU, with a particular focus on energy absorption, stress–strain responses, and damping capabilities. The research employs the Ogden model for hyperelastic characterization, demonstrating excellent correlation with experimental data. Thus, the novelty of this work relies on an approach that – with a focus in the precision and accuracy of the mechanical performance assessment – through a robust novel methodology combining the Ogden’s analytical model with numerical simulation provided by Ansys® and experimental tests of tensile and compression allows to comprehensively understand the mechanical performance of novel auxetic structures intended to energy absorption and impact resistance applications. Our findings reveal significant variations in mechanical performance based on printing orientation, with the 0°direction offering superior ductility and strength. These results suggest that optimizing the printing direction is crucial for enhancing the performance of TPU auxetic structures, particularly in applications requiring high impact resistance, energy absorption, and damping. This study contributes to the advancement of 3D printing technology for the development of next-generation materials with potential applications in protective gear, medical devices or damping devices, among others.</div></div>","PeriodicalId":20628,"journal":{"name":"Polymer Testing","volume":"143 ","pages":"Article 108669"},"PeriodicalIF":5.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Testing","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142941824003465","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
The emergence of metamaterials and layered structures obtained through additive manufacturing (AM) techniques opens a new paradigm of mechanical properties for advanced applications that need to be explored. This study investigates the mechanical behavior of 3D-printed auxetic structures, fabricated from thermoplastic polyurethane (TPU), under tensile and compressive loads. Utilizing fused deposition modeling (MEX), we examined the influence of printing direction on the anisotropic mechanical properties of TPU, with a particular focus on energy absorption, stress–strain responses, and damping capabilities. The research employs the Ogden model for hyperelastic characterization, demonstrating excellent correlation with experimental data. Thus, the novelty of this work relies on an approach that – with a focus in the precision and accuracy of the mechanical performance assessment – through a robust novel methodology combining the Ogden’s analytical model with numerical simulation provided by Ansys® and experimental tests of tensile and compression allows to comprehensively understand the mechanical performance of novel auxetic structures intended to energy absorption and impact resistance applications. Our findings reveal significant variations in mechanical performance based on printing orientation, with the 0°direction offering superior ductility and strength. These results suggest that optimizing the printing direction is crucial for enhancing the performance of TPU auxetic structures, particularly in applications requiring high impact resistance, energy absorption, and damping. This study contributes to the advancement of 3D printing technology for the development of next-generation materials with potential applications in protective gear, medical devices or damping devices, among others.
期刊介绍:
Polymer Testing focuses on the testing, analysis and characterization of polymer materials, including both synthetic and natural or biobased polymers. Novel testing methods and the testing of novel polymeric materials in bulk, solution and dispersion is covered. In addition, we welcome the submission of the testing of polymeric materials for a wide range of applications and industrial products as well as nanoscale characterization.
The scope includes but is not limited to the following main topics:
Novel testing methods and Chemical analysis
• mechanical, thermal, electrical, chemical, imaging, spectroscopy, scattering and rheology
Physical properties and behaviour of novel polymer systems
• nanoscale properties, morphology, transport properties
Degradation and recycling of polymeric materials when combined with novel testing or characterization methods
• degradation, biodegradation, ageing and fire retardancy
Modelling and Simulation work will be only considered when it is linked to new or previously published experimental results.