Injectable double network hydrogel with adjustable stiffness for modulation of macrophage polarization

IF 5 2区 材料科学 Q1 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
Jinxin Wu , Bing Han , Shili Ai , Aijing Wang , Yilin Song , Moran Jin , Xiaozhong Qu , Xiaoyan Wang
{"title":"Injectable double network hydrogel with adjustable stiffness for modulation of macrophage polarization","authors":"Jinxin Wu ,&nbsp;Bing Han ,&nbsp;Shili Ai ,&nbsp;Aijing Wang ,&nbsp;Yilin Song ,&nbsp;Moran Jin ,&nbsp;Xiaozhong Qu ,&nbsp;Xiaoyan Wang","doi":"10.1016/j.polymertesting.2024.108685","DOIUrl":null,"url":null,"abstract":"<div><div>Substrate stiffness can regulate macrophage polarization to support tissue repair in tissue engineering applications. Understanding the mechanisms of stiffness sensing is valuable for applying this knowledge to stiffness-related inflammatory diseases. In this study, we examined IACs-related integrins related to stiffness-sensitive macrophage polarization by constructing an injectable double-network (DN) hydrogel with varying stiffness. Inflammatory cytokine expression decreased as substrate stiffness increased (from 19.9 to 125.7 kPa), with medium stiffness (84.8 kPa) inducing macrophages to an increased level of anti-inflammatory polarization. Improved adhesion and elevated expression levels of ITGA5, ITGA3, and ITGAV in macrophages on the softer hydrogels highlighted the role of integrins in stiffness-regulated macrophage polarization. Inhibition of integrins using ethylenediaminetetraacetic acid (EDTA) abolished differences in macrophage polarization across the three groups, further confirming the central role of integrins. These findings suggest that, in tissue engineering, selecting appropriate substrate stiffness or gradient stiffness hydrogel could align with the optimal mechanical environment required for specific cell growth and function. Additionally, the critical role of integrins in mediating mechanical transduction may provide new therapeutic targets for treating certain stiffness-related inflammatory diseases.</div></div>","PeriodicalId":20628,"journal":{"name":"Polymer Testing","volume":"143 ","pages":"Article 108685"},"PeriodicalIF":5.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Testing","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142941824003623","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

Substrate stiffness can regulate macrophage polarization to support tissue repair in tissue engineering applications. Understanding the mechanisms of stiffness sensing is valuable for applying this knowledge to stiffness-related inflammatory diseases. In this study, we examined IACs-related integrins related to stiffness-sensitive macrophage polarization by constructing an injectable double-network (DN) hydrogel with varying stiffness. Inflammatory cytokine expression decreased as substrate stiffness increased (from 19.9 to 125.7 kPa), with medium stiffness (84.8 kPa) inducing macrophages to an increased level of anti-inflammatory polarization. Improved adhesion and elevated expression levels of ITGA5, ITGA3, and ITGAV in macrophages on the softer hydrogels highlighted the role of integrins in stiffness-regulated macrophage polarization. Inhibition of integrins using ethylenediaminetetraacetic acid (EDTA) abolished differences in macrophage polarization across the three groups, further confirming the central role of integrins. These findings suggest that, in tissue engineering, selecting appropriate substrate stiffness or gradient stiffness hydrogel could align with the optimal mechanical environment required for specific cell growth and function. Additionally, the critical role of integrins in mediating mechanical transduction may provide new therapeutic targets for treating certain stiffness-related inflammatory diseases.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Polymer Testing
Polymer Testing 工程技术-材料科学:表征与测试
CiteScore
10.70
自引率
5.90%
发文量
328
审稿时长
44 days
期刊介绍: Polymer Testing focuses on the testing, analysis and characterization of polymer materials, including both synthetic and natural or biobased polymers. Novel testing methods and the testing of novel polymeric materials in bulk, solution and dispersion is covered. In addition, we welcome the submission of the testing of polymeric materials for a wide range of applications and industrial products as well as nanoscale characterization. The scope includes but is not limited to the following main topics: Novel testing methods and Chemical analysis • mechanical, thermal, electrical, chemical, imaging, spectroscopy, scattering and rheology Physical properties and behaviour of novel polymer systems • nanoscale properties, morphology, transport properties Degradation and recycling of polymeric materials when combined with novel testing or characterization methods • degradation, biodegradation, ageing and fire retardancy Modelling and Simulation work will be only considered when it is linked to new or previously published experimental results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信