{"title":"Is heating of ions by Alfvén waves via nonresonant interactions applicable in the Earth’s magnetosphere?","authors":"I.A. Barghouthi, W.T. Rabai","doi":"10.1016/j.jastp.2024.106413","DOIUrl":null,"url":null,"abstract":"<div><div>Heating of ions in Earth’s magnetosphere by enhanced Alfv<span><math><mover><mrow><mi>e</mi></mrow><mrow><mo>́</mo></mrow></mover></math></span>n waves below resonance frequency (nonresonant heating) has been presented in many studies, among these is the study of Wang et al. (2006) in which they stated that in any region in space with low beta plasma, this heating process, i.e. nonresonant ion heating is applicable and effective. In this paper we stress on the inapplicability of this type of heating in the Earth’s magnetosphere. We present; (1) a data set that provides a strong proof that the theory presented by Wang et al. (2006) is not applicable in this region of space (i.e. Earth’s magnetosphere), (2) in addition, we plot altitude profiles for parallel, perpendicular, and total temperatures for hydrogen ions in cusp and central polar cap regions by evaluating observed magnetic activity and Alfv<span><math><mover><mrow><mi>e</mi></mrow><mrow><mo>́</mo></mrow></mover></math></span>n waves into Wang et al. (2006) theory, we find the changes in the altitude behavior in ion temperature profiles are very small, (3) also, we compare between Monte Carlo simulations results of ion temperatures obtained by using Barghouthi model (this model includes the effects of gravity, polarization electric field, divergence geomagnetic field, centrifugal acceleration, resonant ion heating, and with and without nonresonant ion heating effect) in cusp and central polar cap regions with appropriate boundary conditions (Barghouthi et al., 2008), both simulation results of ion temperatures are almost the same. Therefore, we report on the nonresonant ion heating process in central polar cap and cusp regions is not significant.</div></div>","PeriodicalId":15096,"journal":{"name":"Journal of Atmospheric and Solar-Terrestrial Physics","volume":"267 ","pages":"Article 106413"},"PeriodicalIF":1.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric and Solar-Terrestrial Physics","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364682624002414","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Heating of ions in Earth’s magnetosphere by enhanced Alfvn waves below resonance frequency (nonresonant heating) has been presented in many studies, among these is the study of Wang et al. (2006) in which they stated that in any region in space with low beta plasma, this heating process, i.e. nonresonant ion heating is applicable and effective. In this paper we stress on the inapplicability of this type of heating in the Earth’s magnetosphere. We present; (1) a data set that provides a strong proof that the theory presented by Wang et al. (2006) is not applicable in this region of space (i.e. Earth’s magnetosphere), (2) in addition, we plot altitude profiles for parallel, perpendicular, and total temperatures for hydrogen ions in cusp and central polar cap regions by evaluating observed magnetic activity and Alfvn waves into Wang et al. (2006) theory, we find the changes in the altitude behavior in ion temperature profiles are very small, (3) also, we compare between Monte Carlo simulations results of ion temperatures obtained by using Barghouthi model (this model includes the effects of gravity, polarization electric field, divergence geomagnetic field, centrifugal acceleration, resonant ion heating, and with and without nonresonant ion heating effect) in cusp and central polar cap regions with appropriate boundary conditions (Barghouthi et al., 2008), both simulation results of ion temperatures are almost the same. Therefore, we report on the nonresonant ion heating process in central polar cap and cusp regions is not significant.
期刊介绍:
The Journal of Atmospheric and Solar-Terrestrial Physics (JASTP) is an international journal concerned with the inter-disciplinary science of the Earth''s atmospheric and space environment, especially the highly varied and highly variable physical phenomena that occur in this natural laboratory and the processes that couple them.
The journal covers the physical processes operating in the troposphere, stratosphere, mesosphere, thermosphere, ionosphere, magnetosphere, the Sun, interplanetary medium, and heliosphere. Phenomena occurring in other "spheres", solar influences on climate, and supporting laboratory measurements are also considered. The journal deals especially with the coupling between the different regions.
Solar flares, coronal mass ejections, and other energetic events on the Sun create interesting and important perturbations in the near-Earth space environment. The physics of such "space weather" is central to the Journal of Atmospheric and Solar-Terrestrial Physics and the journal welcomes papers that lead in the direction of a predictive understanding of the coupled system. Regarding the upper atmosphere, the subjects of aeronomy, geomagnetism and geoelectricity, auroral phenomena, radio wave propagation, and plasma instabilities, are examples within the broad field of solar-terrestrial physics which emphasise the energy exchange between the solar wind, the magnetospheric and ionospheric plasmas, and the neutral gas. In the lower atmosphere, topics covered range from mesoscale to global scale dynamics, to atmospheric electricity, lightning and its effects, and to anthropogenic changes.