Mahboobeh Fallah , Marco Van De Wiel , Ran Holtzman
{"title":"Hydrological vs. mechanical impacts of soil water repellency on erosion","authors":"Mahboobeh Fallah , Marco Van De Wiel , Ran Holtzman","doi":"10.1016/j.earscirev.2024.105022","DOIUrl":null,"url":null,"abstract":"<div><div>Soil erosion is a major concern for both agricultural and natural resources. Soil water repellency (SWR) is known to hinder wetting of soils, decreasing infiltration of water and thus increasing overland flow—the driving force for erosion. These hydrological impacts of SWR on erosion, are quite well established. In contrast, the mechanical impacts of SWR, namely on the resistance to erosion, are poorly understood. Here, we provide a critical review of the current understanding of both the hydrological and mechanical impacts of SWR on erosion. Analysis of compiled experimental data provides contradictory evidence: an increase in erosion with increasing SWR in some cases, versus a decrease in others, with a strong dependency on the mechanism (weather, fire, or pollution-induced SWR). We offer a plausible explanation for this contradiction—that the net erosional impacts of SWR depend on the balance between its hydrological and mechanical effects on erosion, and exemplify this in a simple 1D slope model. Our simulations illustrate the dual nature of SWR's influence on soil erosion, and explain the diversity of published data. Finally, we identify research gaps and suggest ways to address them.</div></div>","PeriodicalId":11483,"journal":{"name":"Earth-Science Reviews","volume":"261 ","pages":"Article 105022"},"PeriodicalIF":10.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth-Science Reviews","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012825224003507","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Soil erosion is a major concern for both agricultural and natural resources. Soil water repellency (SWR) is known to hinder wetting of soils, decreasing infiltration of water and thus increasing overland flow—the driving force for erosion. These hydrological impacts of SWR on erosion, are quite well established. In contrast, the mechanical impacts of SWR, namely on the resistance to erosion, are poorly understood. Here, we provide a critical review of the current understanding of both the hydrological and mechanical impacts of SWR on erosion. Analysis of compiled experimental data provides contradictory evidence: an increase in erosion with increasing SWR in some cases, versus a decrease in others, with a strong dependency on the mechanism (weather, fire, or pollution-induced SWR). We offer a plausible explanation for this contradiction—that the net erosional impacts of SWR depend on the balance between its hydrological and mechanical effects on erosion, and exemplify this in a simple 1D slope model. Our simulations illustrate the dual nature of SWR's influence on soil erosion, and explain the diversity of published data. Finally, we identify research gaps and suggest ways to address them.
期刊介绍:
Covering a much wider field than the usual specialist journals, Earth Science Reviews publishes review articles dealing with all aspects of Earth Sciences, and is an important vehicle for allowing readers to see their particular interest related to the Earth Sciences as a whole.