Hydrological vs. mechanical impacts of soil water repellency on erosion

IF 10.8 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Mahboobeh Fallah , Marco Van De Wiel , Ran Holtzman
{"title":"Hydrological vs. mechanical impacts of soil water repellency on erosion","authors":"Mahboobeh Fallah ,&nbsp;Marco Van De Wiel ,&nbsp;Ran Holtzman","doi":"10.1016/j.earscirev.2024.105022","DOIUrl":null,"url":null,"abstract":"<div><div>Soil erosion is a major concern for both agricultural and natural resources. Soil water repellency (SWR) is known to hinder wetting of soils, decreasing infiltration of water and thus increasing overland flow—the driving force for erosion. These hydrological impacts of SWR on erosion, are quite well established. In contrast, the mechanical impacts of SWR, namely on the resistance to erosion, are poorly understood. Here, we provide a critical review of the current understanding of both the hydrological and mechanical impacts of SWR on erosion. Analysis of compiled experimental data provides contradictory evidence: an increase in erosion with increasing SWR in some cases, versus a decrease in others, with a strong dependency on the mechanism (weather, fire, or pollution-induced SWR). We offer a plausible explanation for this contradiction—that the net erosional impacts of SWR depend on the balance between its hydrological and mechanical effects on erosion, and exemplify this in a simple 1D slope model. Our simulations illustrate the dual nature of SWR's influence on soil erosion, and explain the diversity of published data. Finally, we identify research gaps and suggest ways to address them.</div></div>","PeriodicalId":11483,"journal":{"name":"Earth-Science Reviews","volume":"261 ","pages":"Article 105022"},"PeriodicalIF":10.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth-Science Reviews","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012825224003507","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Soil erosion is a major concern for both agricultural and natural resources. Soil water repellency (SWR) is known to hinder wetting of soils, decreasing infiltration of water and thus increasing overland flow—the driving force for erosion. These hydrological impacts of SWR on erosion, are quite well established. In contrast, the mechanical impacts of SWR, namely on the resistance to erosion, are poorly understood. Here, we provide a critical review of the current understanding of both the hydrological and mechanical impacts of SWR on erosion. Analysis of compiled experimental data provides contradictory evidence: an increase in erosion with increasing SWR in some cases, versus a decrease in others, with a strong dependency on the mechanism (weather, fire, or pollution-induced SWR). We offer a plausible explanation for this contradiction—that the net erosional impacts of SWR depend on the balance between its hydrological and mechanical effects on erosion, and exemplify this in a simple 1D slope model. Our simulations illustrate the dual nature of SWR's influence on soil erosion, and explain the diversity of published data. Finally, we identify research gaps and suggest ways to address them.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Earth-Science Reviews
Earth-Science Reviews 地学-地球科学综合
CiteScore
21.70
自引率
5.80%
发文量
294
审稿时长
15.1 weeks
期刊介绍: Covering a much wider field than the usual specialist journals, Earth Science Reviews publishes review articles dealing with all aspects of Earth Sciences, and is an important vehicle for allowing readers to see their particular interest related to the Earth Sciences as a whole.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信