{"title":"Pseudomonas azotoformans and Pseudomonas putida: Novel kiwifruit-native biological control agents against Pseudomonas syringae pv. actinidiae","authors":"Cristiana Correia , Antonio Cellini , Irene Donati , Panagiotis Voulgaris , Adebayo Ebenezer Obafemi , Elia Soriato , Elodie Vandelle , Conceição Santos , Francesco Spinelli","doi":"10.1016/j.biocontrol.2025.105706","DOIUrl":null,"url":null,"abstract":"<div><div><em>Pseudomonas syringae</em> pv. <em>actinidiae</em> (Psa), the etiological agent of the bacterial canker in <em>Actinidia</em> plants, remains the main threat to kiwifruit orchards worldwide. Though <em>e</em>nvironment-friendly disease control methods based on biological control agents (BCAs) represent a promising alternative to xenobiotic pesticides, their efficacy in field conditions has often resulted erratic. The selection of beneficial microorganisms directly from the phyllosphere of the host plant is a promising approach to overcome this limitation since it ensures the adaptation of the isolates to the environment in which they are going to be applied. This work reports the screening of the kiwifruit epiphytic bacterial community from three Psa infected orchards in Portugal to identify potential bacterial BCAs capable of inhibiting Psa growth or interfering with its virulence. Strains of <em>Pseudomonas putida</em> and <em>Pseudomonas azotoformans</em> efficiently antagonized Psa on flowers and leaves and colonized all susceptible organs with high surviving rates in glasshouse conditions. <em>In vitro</em> metabolic analysis together with genome sequencing and annotation revealed siderophore production, in particular pyoverdine, which may limit iron availability to the pathogen. Moreover, several biosynthetic gene clusters of secondary metabolites, were predicted in the genome of both strains, including non-ribosomal peptides, and the bacteriocin pyocin was predicted in the genome of BG1. Overall, these results open new perspectives to develop commercial products for Psa management based on kiwifruit-native bacteria, well-adapted to common orchard management practices, with a high efficiency of host plant colonization, at Psa-conducive temperatures, and point out possible mechanisms of action for these two BCA candidates, supporting further steps to assess their effectiveness in orchard conditions.</div></div>","PeriodicalId":8880,"journal":{"name":"Biological Control","volume":"201 ","pages":"Article 105706"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Control","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1049964425000167","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Pseudomonas syringae pv. actinidiae (Psa), the etiological agent of the bacterial canker in Actinidia plants, remains the main threat to kiwifruit orchards worldwide. Though environment-friendly disease control methods based on biological control agents (BCAs) represent a promising alternative to xenobiotic pesticides, their efficacy in field conditions has often resulted erratic. The selection of beneficial microorganisms directly from the phyllosphere of the host plant is a promising approach to overcome this limitation since it ensures the adaptation of the isolates to the environment in which they are going to be applied. This work reports the screening of the kiwifruit epiphytic bacterial community from three Psa infected orchards in Portugal to identify potential bacterial BCAs capable of inhibiting Psa growth or interfering with its virulence. Strains of Pseudomonas putida and Pseudomonas azotoformans efficiently antagonized Psa on flowers and leaves and colonized all susceptible organs with high surviving rates in glasshouse conditions. In vitro metabolic analysis together with genome sequencing and annotation revealed siderophore production, in particular pyoverdine, which may limit iron availability to the pathogen. Moreover, several biosynthetic gene clusters of secondary metabolites, were predicted in the genome of both strains, including non-ribosomal peptides, and the bacteriocin pyocin was predicted in the genome of BG1. Overall, these results open new perspectives to develop commercial products for Psa management based on kiwifruit-native bacteria, well-adapted to common orchard management practices, with a high efficiency of host plant colonization, at Psa-conducive temperatures, and point out possible mechanisms of action for these two BCA candidates, supporting further steps to assess their effectiveness in orchard conditions.
期刊介绍:
Biological control is an environmentally sound and effective means of reducing or mitigating pests and pest effects through the use of natural enemies. The aim of Biological Control is to promote this science and technology through publication of original research articles and reviews of research and theory. The journal devotes a section to reports on biotechnologies dealing with the elucidation and use of genes or gene products for the enhancement of biological control agents.
The journal encompasses biological control of viral, microbial, nematode, insect, mite, weed, and vertebrate pests in agriculture, aquatic, forest, natural resource, stored product, and urban environments. Biological control of arthropod pests of human and domestic animals is also included. Ecological, molecular, and biotechnological approaches to the understanding of biological control are welcome.