A strain of Talaromyces assiutensis provides multiple protection effects against insect pests and a fungal pathogen after endophytic settlement in soybean plants

IF 3.7 2区 农林科学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Li Sui , Yang Lu , Ke Cheng , Yifan Tian , Zhiming Liu , Zhao Xie , Zhengkun Zhang , Qiyun Li
{"title":"A strain of Talaromyces assiutensis provides multiple protection effects against insect pests and a fungal pathogen after endophytic settlement in soybean plants","authors":"Li Sui ,&nbsp;Yang Lu ,&nbsp;Ke Cheng ,&nbsp;Yifan Tian ,&nbsp;Zhiming Liu ,&nbsp;Zhao Xie ,&nbsp;Zhengkun Zhang ,&nbsp;Qiyun Li","doi":"10.1016/j.biocontrol.2025.105703","DOIUrl":null,"url":null,"abstract":"<div><div><em>Talaromyces assiutensis</em> was reported as an endophytic fungi of plant, with antimicrobial and anticancer properties; however, it has never been reported as an entomopathogenic fungus (EPF). Herein, an EPF strain was isolated from diseased larvae of <em>Spodoptera litura</em> in a soybean field. The purified isolate was identified as <em>T. assiutensis</em> and designated TaS1GZL-1. Its pathogenicity towards five insect pests belonging to <em>Lepidoptera</em> and <em>Hemiptera</em>, as well as the effect of temperature on its growth and pathogenicity against insects were measured. In addition, its control efficiency against major soybean insect pests and phytopathogenicity were also evaluated after plant colonization. The results showed that TaS1GZL-1 had strong pathogenicity towards five insect pests, and there was no negative effect on the strain growth rate and the corrected mortality rate toward insect pests at 40 °C. Furthermore, this EPF strain could not only inhibit the growth of <em>Sclerotinia sclerotiorum in vitro</em>, but also colonized soybean plants as an endophyte via root irrigation. TaS1GZL-1 colonization upregulated the expression levels of 12 genes related to defense pathways in soybean lateral roots, thereby inducing plant tolerance against phytopathogen infection, as well as disrupting the feeding selectivity of <em>S. litura</em> larvae. Semi-field experiments verified that TaS1GZL-1 had practical control effects on <em>S. litura</em> larvae and sclerotinia disease. This is the first record of a natural infection of insect pests by <em>T. assiutensis</em>, providing new insights into its ecological function. Thus, TaS1GZL-1 is an EPF strain that directly kills a broad-spectrum of insect pests and induces plant tolerance against biotic stress caused by phytopathogens and insect pest after endophytic settlement in soybean plants.</div></div>","PeriodicalId":8880,"journal":{"name":"Biological Control","volume":"201 ","pages":"Article 105703"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Control","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1049964425000131","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Talaromyces assiutensis was reported as an endophytic fungi of plant, with antimicrobial and anticancer properties; however, it has never been reported as an entomopathogenic fungus (EPF). Herein, an EPF strain was isolated from diseased larvae of Spodoptera litura in a soybean field. The purified isolate was identified as T. assiutensis and designated TaS1GZL-1. Its pathogenicity towards five insect pests belonging to Lepidoptera and Hemiptera, as well as the effect of temperature on its growth and pathogenicity against insects were measured. In addition, its control efficiency against major soybean insect pests and phytopathogenicity were also evaluated after plant colonization. The results showed that TaS1GZL-1 had strong pathogenicity towards five insect pests, and there was no negative effect on the strain growth rate and the corrected mortality rate toward insect pests at 40 °C. Furthermore, this EPF strain could not only inhibit the growth of Sclerotinia sclerotiorum in vitro, but also colonized soybean plants as an endophyte via root irrigation. TaS1GZL-1 colonization upregulated the expression levels of 12 genes related to defense pathways in soybean lateral roots, thereby inducing plant tolerance against phytopathogen infection, as well as disrupting the feeding selectivity of S. litura larvae. Semi-field experiments verified that TaS1GZL-1 had practical control effects on S. litura larvae and sclerotinia disease. This is the first record of a natural infection of insect pests by T. assiutensis, providing new insights into its ecological function. Thus, TaS1GZL-1 is an EPF strain that directly kills a broad-spectrum of insect pests and induces plant tolerance against biotic stress caused by phytopathogens and insect pest after endophytic settlement in soybean plants.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biological Control
Biological Control 生物-昆虫学
CiteScore
7.40
自引率
7.10%
发文量
220
审稿时长
63 days
期刊介绍: Biological control is an environmentally sound and effective means of reducing or mitigating pests and pest effects through the use of natural enemies. The aim of Biological Control is to promote this science and technology through publication of original research articles and reviews of research and theory. The journal devotes a section to reports on biotechnologies dealing with the elucidation and use of genes or gene products for the enhancement of biological control agents. The journal encompasses biological control of viral, microbial, nematode, insect, mite, weed, and vertebrate pests in agriculture, aquatic, forest, natural resource, stored product, and urban environments. Biological control of arthropod pests of human and domestic animals is also included. Ecological, molecular, and biotechnological approaches to the understanding of biological control are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信