Maima Matin , Natalia Ksepka , Kamil Wysocki , Michel-Edwar Mickael , Alpana Pande , Jarosław Olav Horbańczuk , Artur Jóźwik , Olga Adamska , Artur Stolarczyk , Laszlo Barna Iantovics , Yordanka Ilieva , Pencho Penchev , Atanas G. Atanasov
{"title":"Curcumin dietary supplementation enhances serum carbohydrate-degrading enzyme activities in buffaloes","authors":"Maima Matin , Natalia Ksepka , Kamil Wysocki , Michel-Edwar Mickael , Alpana Pande , Jarosław Olav Horbańczuk , Artur Jóźwik , Olga Adamska , Artur Stolarczyk , Laszlo Barna Iantovics , Yordanka Ilieva , Pencho Penchev , Atanas G. Atanasov","doi":"10.1016/j.crbiot.2025.100276","DOIUrl":null,"url":null,"abstract":"<div><div>Curcumin, the major bioactive compound found in turmeric (<em>Curcuma longa</em>) is a subject of intensive research, due to its multiple bioactivities. Previous studies have investigated metabolic effects of curcumin in humans or established animal research models such as mice, but studies with farm animals have been scarce. In this work, we aimed to study the effects of curcumin supplementation in Bulgarian Murrah buffaloes (<em>Bubalus bubalis</em>), on the serum activities of seven important carbohydrate-metabolizing enzymes, β-glucuronidase, α-galactosidase, α-glucosidase, β-glucosidase, β-galactosidase, N-acetyl-hexosaminidase, and mannosidase. Curcumin was supplemented at a dose of 50 g per animal, per day, and serum activities of the studied enzymes were determined at the start (day 0), middle (day 14), and end (day 28) of the supplementation period. A tendency for increased activity of all studied enzymes was observed upon supplementation with curcumin, with the activity levels of five of the enzymes displaying statistically significant upregulation at day 28 (β-glucuronidase, α-galactosidase, β-galactosidase, N-acetyl-hexosaminidase, and mannosidase). These upregulated activities are in general indicative of increased carbohydrates turnover and detoxification processes, and might provide clues for a better understanding of the mechanisms of action of curcumin <em>in vivo</em>, as well as for novel approaches to rationally impact animal or human health and wellbeing through targeted supplementation.</div></div>","PeriodicalId":52676,"journal":{"name":"Current Research in Biotechnology","volume":"9 ","pages":"Article 100276"},"PeriodicalIF":3.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S259026282500005X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Curcumin, the major bioactive compound found in turmeric (Curcuma longa) is a subject of intensive research, due to its multiple bioactivities. Previous studies have investigated metabolic effects of curcumin in humans or established animal research models such as mice, but studies with farm animals have been scarce. In this work, we aimed to study the effects of curcumin supplementation in Bulgarian Murrah buffaloes (Bubalus bubalis), on the serum activities of seven important carbohydrate-metabolizing enzymes, β-glucuronidase, α-galactosidase, α-glucosidase, β-glucosidase, β-galactosidase, N-acetyl-hexosaminidase, and mannosidase. Curcumin was supplemented at a dose of 50 g per animal, per day, and serum activities of the studied enzymes were determined at the start (day 0), middle (day 14), and end (day 28) of the supplementation period. A tendency for increased activity of all studied enzymes was observed upon supplementation with curcumin, with the activity levels of five of the enzymes displaying statistically significant upregulation at day 28 (β-glucuronidase, α-galactosidase, β-galactosidase, N-acetyl-hexosaminidase, and mannosidase). These upregulated activities are in general indicative of increased carbohydrates turnover and detoxification processes, and might provide clues for a better understanding of the mechanisms of action of curcumin in vivo, as well as for novel approaches to rationally impact animal or human health and wellbeing through targeted supplementation.
期刊介绍:
Current Research in Biotechnology (CRBIOT) is a new primary research, gold open access journal from Elsevier. CRBIOT publishes original papers, reviews, and short communications (including viewpoints and perspectives) resulting from research in biotechnology and biotech-associated disciplines.
Current Research in Biotechnology is a peer-reviewed gold open access (OA) journal and upon acceptance all articles are permanently and freely available. It is a companion to the highly regarded review journal Current Opinion in Biotechnology (2018 CiteScore 8.450) and is part of the Current Opinion and Research (CO+RE) suite of journals. All CO+RE journals leverage the Current Opinion legacy-of editorial excellence, high-impact, and global reach-to ensure they are a widely read resource that is integral to scientists' workflow.