Mask prior generation with language queries guided networks for referring image segmentation

IF 4.3 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Jinhao Zhou , Guoqiang Xiao , Michael S. Lew , Song Wu
{"title":"Mask prior generation with language queries guided networks for referring image segmentation","authors":"Jinhao Zhou ,&nbsp;Guoqiang Xiao ,&nbsp;Michael S. Lew ,&nbsp;Song Wu","doi":"10.1016/j.cviu.2025.104296","DOIUrl":null,"url":null,"abstract":"<div><div>The aim of Referring Image Segmentation (RIS) is to generate a pixel-level mask to accurately segment the target object according to its natural language expression. Previous RIS methods ignore exploring the significant language information in both the encoder and decoder stages, and simply use an upsampling-convolution operation to obtain the prediction mask, resulting in inaccurate visual object locating. Thus, this paper proposes a Mask Prior Generation with Language Queries Guided Network (MPG-LQGNet). In the encoder of MPG-LQGNet, a Bidirectional Spatial Alignment Module (BSAM) is designed to realize the bidirectional fusion for both vision and language embeddings, generating additional language queries to understand both the locating of targets and the semantics of the language. Moreover, a Channel Attention Fusion Gate (CAFG) is designed to enhance the exploration of the significance of the cross-modal embeddings. In the decoder of the MPG-LQGNet, the Language Query Guided Mask Prior Generator (LQPG) is designed to utilize the generated language queries to activate significant information in the upsampled decoding features, obtaining the more accurate mask prior that guides the final prediction. Extensive experiments on RefCOCO series datasets show that our method consistently improves over state-of-the-art methods. The source code of our MPG-LQGNet is available at <span><span>https://github.com/SWU-CS-MediaLab/MPG-LQGNet</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":50633,"journal":{"name":"Computer Vision and Image Understanding","volume":"253 ","pages":"Article 104296"},"PeriodicalIF":4.3000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Vision and Image Understanding","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1077314225000190","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of Referring Image Segmentation (RIS) is to generate a pixel-level mask to accurately segment the target object according to its natural language expression. Previous RIS methods ignore exploring the significant language information in both the encoder and decoder stages, and simply use an upsampling-convolution operation to obtain the prediction mask, resulting in inaccurate visual object locating. Thus, this paper proposes a Mask Prior Generation with Language Queries Guided Network (MPG-LQGNet). In the encoder of MPG-LQGNet, a Bidirectional Spatial Alignment Module (BSAM) is designed to realize the bidirectional fusion for both vision and language embeddings, generating additional language queries to understand both the locating of targets and the semantics of the language. Moreover, a Channel Attention Fusion Gate (CAFG) is designed to enhance the exploration of the significance of the cross-modal embeddings. In the decoder of the MPG-LQGNet, the Language Query Guided Mask Prior Generator (LQPG) is designed to utilize the generated language queries to activate significant information in the upsampled decoding features, obtaining the more accurate mask prior that guides the final prediction. Extensive experiments on RefCOCO series datasets show that our method consistently improves over state-of-the-art methods. The source code of our MPG-LQGNet is available at https://github.com/SWU-CS-MediaLab/MPG-LQGNet.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computer Vision and Image Understanding
Computer Vision and Image Understanding 工程技术-工程:电子与电气
CiteScore
7.80
自引率
4.40%
发文量
112
审稿时长
79 days
期刊介绍: The central focus of this journal is the computer analysis of pictorial information. Computer Vision and Image Understanding publishes papers covering all aspects of image analysis from the low-level, iconic processes of early vision to the high-level, symbolic processes of recognition and interpretation. A wide range of topics in the image understanding area is covered, including papers offering insights that differ from predominant views. Research Areas Include: • Theory • Early vision • Data structures and representations • Shape • Range • Motion • Matching and recognition • Architecture and languages • Vision systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信