A novel methodology for affecting the strain paths during hydraulic bulge tests by means of laser heat treatments

IF 4.4 2区 工程技术 Q1 MECHANICS
A. Cusanno , D. Carty , G. Palumbo
{"title":"A novel methodology for affecting the strain paths during hydraulic bulge tests by means of laser heat treatments","authors":"A. Cusanno ,&nbsp;D. Carty ,&nbsp;G. Palumbo","doi":"10.1016/j.euromechsol.2025.105569","DOIUrl":null,"url":null,"abstract":"<div><div>Nowadays, the design of manufacturing processes is supported by numerical simulations, that require an understanding of the material forming limits under the process conditions. The hydraulic bulge test represents an effective and well-established experimental procedure to evaluate critical strains of a material. However, it relies on using different elliptical die geometries to vary strain paths, introducing limitations in experimental flexibility. This work aims to evaluate the feasibility of achieving different strain paths during hydraulic bulge tests only using a circular die, by pre-softening certain zones of the testing blank using laser heating. The laser heat treatments (LHTs) were designed using a numerical/experimental approach. Two LHT strategies using different laser power values were performed to locally modify the material properties. Then, hydraulic bulge tests were conducted on the LHTed specimens and the resulting strain paths were analysed. The strain paths acquired during hydraulic bulge tests confirmed the possibility to affect the slope of the strain path at the dome by changing the LHT strategy, designed with the proposed methodology.</div></div>","PeriodicalId":50483,"journal":{"name":"European Journal of Mechanics A-Solids","volume":"111 ","pages":"Article 105569"},"PeriodicalIF":4.4000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mechanics A-Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0997753825000038","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Nowadays, the design of manufacturing processes is supported by numerical simulations, that require an understanding of the material forming limits under the process conditions. The hydraulic bulge test represents an effective and well-established experimental procedure to evaluate critical strains of a material. However, it relies on using different elliptical die geometries to vary strain paths, introducing limitations in experimental flexibility. This work aims to evaluate the feasibility of achieving different strain paths during hydraulic bulge tests only using a circular die, by pre-softening certain zones of the testing blank using laser heating. The laser heat treatments (LHTs) were designed using a numerical/experimental approach. Two LHT strategies using different laser power values were performed to locally modify the material properties. Then, hydraulic bulge tests were conducted on the LHTed specimens and the resulting strain paths were analysed. The strain paths acquired during hydraulic bulge tests confirmed the possibility to affect the slope of the strain path at the dome by changing the LHT strategy, designed with the proposed methodology.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.00
自引率
7.30%
发文量
275
审稿时长
48 days
期刊介绍: The European Journal of Mechanics endash; A/Solids continues to publish articles in English in all areas of Solid Mechanics from the physical and mathematical basis to materials engineering, technological applications and methods of modern computational mechanics, both pure and applied research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信