Free vibration properties of novel sandwich plates with a layered and rotational core

IF 4.4 2区 工程技术 Q1 MECHANICS
Youlong Wang , Yuxiang Cai , Kamal Hosen , Junwei Pan
{"title":"Free vibration properties of novel sandwich plates with a layered and rotational core","authors":"Youlong Wang ,&nbsp;Yuxiang Cai ,&nbsp;Kamal Hosen ,&nbsp;Junwei Pan","doi":"10.1016/j.euromechsol.2025.105588","DOIUrl":null,"url":null,"abstract":"<div><div>The layered sandwich plate structure is widely used in various fields due to its lightweight and high-strength characteristics. To further enhance the functionality of these structures and expand their application areas, this study investigates the impact of an innovative method for adjusting the interlayer angle. This study adopts experimental analysis and numerical simulation methods, taking honeycomb core and grid core as examples, to explore the influence of interlayer angle on the first 9 natural frequencies and vibration modes of bilayer and tri-layer circular sandwich plates, and explain the mechanism of the influence of interlayer angle on the structural natural frequency through theoretical analysis. The results indicate that 1) at different angles, the natural frequencies of the same order vibration modes exhibit significant differences. For instance, in the case of the grid core, the minimum change rate of the natural frequency can exceed 10%, and the maximum can reach 16.68%; 2) compared to the unadjusted layered plates, which exhibit localized deformation in higher-order vibration modes, the stiffness distribution becomes more uniform after rotation, transforming the vibration modes into overall continuous deformations; 3) the proposed method allows for considerable changes in natural frequencies of various orders while maintaining stable structural mechanical properties without adding weight. This effectively avoids resonance with the working environment and promotes uniform stiffness distribution, making the structure suitable for use in more demanding stable environments.</div></div>","PeriodicalId":50483,"journal":{"name":"European Journal of Mechanics A-Solids","volume":"111 ","pages":"Article 105588"},"PeriodicalIF":4.4000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mechanics A-Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0997753825000221","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

The layered sandwich plate structure is widely used in various fields due to its lightweight and high-strength characteristics. To further enhance the functionality of these structures and expand their application areas, this study investigates the impact of an innovative method for adjusting the interlayer angle. This study adopts experimental analysis and numerical simulation methods, taking honeycomb core and grid core as examples, to explore the influence of interlayer angle on the first 9 natural frequencies and vibration modes of bilayer and tri-layer circular sandwich plates, and explain the mechanism of the influence of interlayer angle on the structural natural frequency through theoretical analysis. The results indicate that 1) at different angles, the natural frequencies of the same order vibration modes exhibit significant differences. For instance, in the case of the grid core, the minimum change rate of the natural frequency can exceed 10%, and the maximum can reach 16.68%; 2) compared to the unadjusted layered plates, which exhibit localized deformation in higher-order vibration modes, the stiffness distribution becomes more uniform after rotation, transforming the vibration modes into overall continuous deformations; 3) the proposed method allows for considerable changes in natural frequencies of various orders while maintaining stable structural mechanical properties without adding weight. This effectively avoids resonance with the working environment and promotes uniform stiffness distribution, making the structure suitable for use in more demanding stable environments.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.00
自引率
7.30%
发文量
275
审稿时长
48 days
期刊介绍: The European Journal of Mechanics endash; A/Solids continues to publish articles in English in all areas of Solid Mechanics from the physical and mathematical basis to materials engineering, technological applications and methods of modern computational mechanics, both pure and applied research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信