Lucero I. Ledesma-Fosados , Nohra V. Gallardo-Rivas , Ulises Páramo-García , Ricardo García-Alamilla , José de J. Pérez-Bueno , Ana M. Mendoza-Martínez
{"title":"Enhanced control of magnetite nanoparticle electrosynthesis through cyclic voltammetry","authors":"Lucero I. Ledesma-Fosados , Nohra V. Gallardo-Rivas , Ulises Páramo-García , Ricardo García-Alamilla , José de J. Pérez-Bueno , Ana M. Mendoza-Martínez","doi":"10.1016/j.ijoes.2025.100956","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we report the electrosynthesis of magnetite (Fe<sub>3</sub>O<sub>4</sub>) nanoparticles using cyclic voltammetry with a carbon steel sacrificial anode in NaCl solutions. The study explored scan rates between 1 and 20 mV/s in NaCl concentrations of 0.01 M and 0.1 M. Comprehensive characterization using Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray diffraction (XRD), and dynamic light scattering (DLS) revealed that the slower scan rates and higher electrolyte concentrations promoted the formation of well-crystallized magnetite. At higher scan rates and lower NaCl concentrations, intermediate iron oxide phases such as goethite (α-FeOOH) and lepidocrocite (γ-FeOOH) were observed. The smallest crystallite size (18 nm) was obtained at 1 mV/s in 0.1 M NaCl, confirming that lower scan rates favor smaller and more uniform nanoparticles. This work highlights the influence of scan rate and electrolyte concentration on nanoparticle size, phase purity, and morphology, offering insights into controlling these parameters for optimized synthesis. The findings have significant implications for environmental applications such as water remediation and energy storage technologies.</div></div>","PeriodicalId":13872,"journal":{"name":"International Journal of Electrochemical Science","volume":"20 4","pages":"Article 100956"},"PeriodicalIF":1.3000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrochemical Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1452398125000318","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we report the electrosynthesis of magnetite (Fe3O4) nanoparticles using cyclic voltammetry with a carbon steel sacrificial anode in NaCl solutions. The study explored scan rates between 1 and 20 mV/s in NaCl concentrations of 0.01 M and 0.1 M. Comprehensive characterization using Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray diffraction (XRD), and dynamic light scattering (DLS) revealed that the slower scan rates and higher electrolyte concentrations promoted the formation of well-crystallized magnetite. At higher scan rates and lower NaCl concentrations, intermediate iron oxide phases such as goethite (α-FeOOH) and lepidocrocite (γ-FeOOH) were observed. The smallest crystallite size (18 nm) was obtained at 1 mV/s in 0.1 M NaCl, confirming that lower scan rates favor smaller and more uniform nanoparticles. This work highlights the influence of scan rate and electrolyte concentration on nanoparticle size, phase purity, and morphology, offering insights into controlling these parameters for optimized synthesis. The findings have significant implications for environmental applications such as water remediation and energy storage technologies.
期刊介绍:
International Journal of Electrochemical Science is a peer-reviewed, open access journal that publishes original research articles, short communications as well as review articles in all areas of electrochemistry: Scope - Theoretical and Computational Electrochemistry - Processes on Electrodes - Electroanalytical Chemistry and Sensor Science - Corrosion - Electrochemical Energy Conversion and Storage - Electrochemical Engineering - Coatings - Electrochemical Synthesis - Bioelectrochemistry - Molecular Electrochemistry