Anthony Fanizza , Nicholas Bollis , Jason Ware , Eugenijus Urnezius , Elettra L. Piacentino , Thomas M. Gilbert , Victor Ryzhov
{"title":"Dehydrogenation of formic acid by first-row transition-metal/crown ether complexes studied by mass spectrometry and theoretical calculations","authors":"Anthony Fanizza , Nicholas Bollis , Jason Ware , Eugenijus Urnezius , Elettra L. Piacentino , Thomas M. Gilbert , Victor Ryzhov","doi":"10.1016/j.ijms.2024.117391","DOIUrl":null,"url":null,"abstract":"<div><div>We have investigated ternary cationic complexes of several first-row transition metals M<sup>2+</sup> (M = Mn, Fe, Co, Ni, Cu and Zn) with three crown ethers L (where L = 12-crown-4, 15-crown-5, and 18-crown-6) with the goal of hydrogen production from formic acid. The ions of the general formula [LM(OOCH)]<sup>+</sup> can be easily formed by electrospray ionization and decarboxylated in the gas phase via collision-induced dissociation (CID) with virtually no side reactions to form the corresponding hydride complexes [LMH]<sup>+</sup>. These hydride complexes were reacted with the neutral formic acid via a gas-phase ion-molecule reaction in the linear quadrupole ion trap which resulted in the production of the molecular hydrogen and re-formation of the initial [LM(OOCH)]<sup>+</sup> ion. Thus, the process represented a formal catalytic cycle with the overall equation HCOOH = H<sub>2</sub>+ CO<sub>2</sub>. The experimental collision efficiencies of these reactions for 12-crown-4 complexes ranged from 0.2 % (Zn) to 100 %(Co) and followed the trend Co ≥ Ni ≥ Mn > Fe > Cu ≫ Zn. These results correlate very well with the theoretical DFT calculations for the transition state energies (barriers). Additional theoretical calculations looked at the structure of the complexes for the explanation of the observed trends. It was shown for Zn complexes that bigger crowns, especially 18-crown-6, can be significantly distorted resulting in one of O-Zn bonds being significantly shorter than the others. The work shows that crown ethers can serve as effective, flexible ligands for dehydrogenation of formic acid by first-row transition metal ions.</div></div>","PeriodicalId":338,"journal":{"name":"International Journal of Mass Spectrometry","volume":"508 ","pages":"Article 117391"},"PeriodicalIF":1.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387380624002021","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We have investigated ternary cationic complexes of several first-row transition metals M2+ (M = Mn, Fe, Co, Ni, Cu and Zn) with three crown ethers L (where L = 12-crown-4, 15-crown-5, and 18-crown-6) with the goal of hydrogen production from formic acid. The ions of the general formula [LM(OOCH)]+ can be easily formed by electrospray ionization and decarboxylated in the gas phase via collision-induced dissociation (CID) with virtually no side reactions to form the corresponding hydride complexes [LMH]+. These hydride complexes were reacted with the neutral formic acid via a gas-phase ion-molecule reaction in the linear quadrupole ion trap which resulted in the production of the molecular hydrogen and re-formation of the initial [LM(OOCH)]+ ion. Thus, the process represented a formal catalytic cycle with the overall equation HCOOH = H2+ CO2. The experimental collision efficiencies of these reactions for 12-crown-4 complexes ranged from 0.2 % (Zn) to 100 %(Co) and followed the trend Co ≥ Ni ≥ Mn > Fe > Cu ≫ Zn. These results correlate very well with the theoretical DFT calculations for the transition state energies (barriers). Additional theoretical calculations looked at the structure of the complexes for the explanation of the observed trends. It was shown for Zn complexes that bigger crowns, especially 18-crown-6, can be significantly distorted resulting in one of O-Zn bonds being significantly shorter than the others. The work shows that crown ethers can serve as effective, flexible ligands for dehydrogenation of formic acid by first-row transition metal ions.
期刊介绍:
The journal invites papers that advance the field of mass spectrometry by exploring fundamental aspects of ion processes using both the experimental and theoretical approaches, developing new instrumentation and experimental strategies for chemical analysis using mass spectrometry, developing new computational strategies for data interpretation and integration, reporting new applications of mass spectrometry and hyphenated techniques in biology, chemistry, geology, and physics.
Papers, in which standard mass spectrometry techniques are used for analysis will not be considered.
IJMS publishes full-length articles, short communications, reviews, and feature articles including young scientist features.