{"title":"Building a Cognitive Twin using a distributed cognitive system and an evolution strategy","authors":"Wandemberg Gibaut, Ricardo Gudwin","doi":"10.1016/j.cogsys.2025.101326","DOIUrl":null,"url":null,"abstract":"<div><div>This work presents a technique to build interaction-based Cognitive Twins (a computational version of an external agent) using input–output training and an Evolution Strategy on top of a framework for distributed Cognitive Architectures. Here, we show that it is possible to orchestrate many simple physical and virtual devices to achieve good approximations of a person’s interaction behavior by training the system in an end-to-end fashion and present performance metrics. The generated Cognitive Twin may later be used to automate tasks, generate more realistic human-like artificial agents or further investigate its behaviors.</div></div>","PeriodicalId":55242,"journal":{"name":"Cognitive Systems Research","volume":"90 ","pages":"Article 101326"},"PeriodicalIF":2.1000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Systems Research","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389041725000063","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This work presents a technique to build interaction-based Cognitive Twins (a computational version of an external agent) using input–output training and an Evolution Strategy on top of a framework for distributed Cognitive Architectures. Here, we show that it is possible to orchestrate many simple physical and virtual devices to achieve good approximations of a person’s interaction behavior by training the system in an end-to-end fashion and present performance metrics. The generated Cognitive Twin may later be used to automate tasks, generate more realistic human-like artificial agents or further investigate its behaviors.
期刊介绍:
Cognitive Systems Research is dedicated to the study of human-level cognition. As such, it welcomes papers which advance the understanding, design and applications of cognitive and intelligent systems, both natural and artificial.
The journal brings together a broad community studying cognition in its many facets in vivo and in silico, across the developmental spectrum, focusing on individual capacities or on entire architectures. It aims to foster debate and integrate ideas, concepts, constructs, theories, models and techniques from across different disciplines and different perspectives on human-level cognition. The scope of interest includes the study of cognitive capacities and architectures - both brain-inspired and non-brain-inspired - and the application of cognitive systems to real-world problems as far as it offers insights relevant for the understanding of cognition.
Cognitive Systems Research therefore welcomes mature and cutting-edge research approaching cognition from a systems-oriented perspective, both theoretical and empirically-informed, in the form of original manuscripts, short communications, opinion articles, systematic reviews, and topical survey articles from the fields of Cognitive Science (including Philosophy of Cognitive Science), Artificial Intelligence/Computer Science, Cognitive Robotics, Developmental Science, Psychology, and Neuroscience and Neuromorphic Engineering. Empirical studies will be considered if they are supplemented by theoretical analyses and contributions to theory development and/or computational modelling studies.