Geophysical delineation of the newly identified Gulmarg fault in the Kashmir Basin, NW Himalaya. Implications for active structural control

Ayaz Mohmood Dar, Syed Kaiser Bukhari
{"title":"Geophysical delineation of the newly identified Gulmarg fault in the Kashmir Basin, NW Himalaya. Implications for active structural control","authors":"Ayaz Mohmood Dar,&nbsp;Syed Kaiser Bukhari","doi":"10.1016/j.eqrea.2024.100315","DOIUrl":null,"url":null,"abstract":"<div><div>The Kashmir Basin, shaped by the collision of the Indian and Eurasian tectonic plates, features prominent faults, including the Balapur fault and other fault zones. This study focuses on the Gulmarg fault within the Northwestern Himalaya, using advanced geomagnetic techniques for delineation. Geomagnetic measurements reveal the characteristics of the newly identified Gulmarg fault. Ground magnetic surveys with Proton Precession Magnetometers along linear profiles and a magnetic grid highlight fault-related anomalies. The results indicate a fault running through the Gulmarg meadows, approximately 1.6 ​km from the Balapur fault, suggesting a potential coupling between the two. Three profiles across the fault exhibit distinctive magnetic variations, highlighting the intricate nature of the fault structure. Gridding methods also reveal anomalies associated with subsurface water and hydraulic activities, underscoring the importance of advanced geophysical techniques. This study emphasizes the significance of detailed investigations to unravel the complex geological processes shaping the Kashmir Basin. The study provides valuable insights into the tectonic activity in the Gulmarg region, underscoring the role of geophysical studies in enhancing our understanding of dynamic geological structures like the Gulmarg fault zone.</div></div>","PeriodicalId":100384,"journal":{"name":"Earthquake Research Advances","volume":"5 1","pages":"Article 100315"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquake Research Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772467024000411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Kashmir Basin, shaped by the collision of the Indian and Eurasian tectonic plates, features prominent faults, including the Balapur fault and other fault zones. This study focuses on the Gulmarg fault within the Northwestern Himalaya, using advanced geomagnetic techniques for delineation. Geomagnetic measurements reveal the characteristics of the newly identified Gulmarg fault. Ground magnetic surveys with Proton Precession Magnetometers along linear profiles and a magnetic grid highlight fault-related anomalies. The results indicate a fault running through the Gulmarg meadows, approximately 1.6 ​km from the Balapur fault, suggesting a potential coupling between the two. Three profiles across the fault exhibit distinctive magnetic variations, highlighting the intricate nature of the fault structure. Gridding methods also reveal anomalies associated with subsurface water and hydraulic activities, underscoring the importance of advanced geophysical techniques. This study emphasizes the significance of detailed investigations to unravel the complex geological processes shaping the Kashmir Basin. The study provides valuable insights into the tectonic activity in the Gulmarg region, underscoring the role of geophysical studies in enhancing our understanding of dynamic geological structures like the Gulmarg fault zone.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信