{"title":"An efficient photo-degradation of methylene blue by poly-3-thenoic acid sensitized Co/TiO2 under visible light and inactivation of pathogens","authors":"Neha Kumari , Sudhakar Chintakula , Immandhi Sai Sonali Anantha , Pilla Pushpavati , Suresh Maddila","doi":"10.1016/j.tgchem.2024.100058","DOIUrl":null,"url":null,"abstract":"<div><div>Methylene blue dye is used extensively in industries, including paper, temporary hair coloring, coating for paper stock wool, and cotton dying. When the amount of methylene blue dye is more significant than 2 mg/kg, it can lead to serious health issues in people, including cyanosis, tissue necrosis, elevated heart rate, vomiting, shock, and Heinz body formation. The present chapter discusses the sol-gel-assisted synthesis of P3TA-supported Cobalt-doped TiO<sub>2</sub> nanohybrid. This study investigated the characteristics of both prepared bare TiO<sub>2</sub> and metal (Co) doped nano-hybrid using a variety of analytical tools, including XRD, SEM-EDX, BET, FTIR, XPS, and UV–visible DRS. The photo-catalytic performance of prepared samples was executed towards the degradation of methylene blue (MB) dye under visible light irradiations. Additionally, tests for antibiotic resistance were performed on the pathogens <em>E. coli</em> and <em>S. aureus</em>. Significant antibacterial activities against <em>E. coli</em> and <em>S. aureus</em> were demonstrated by the chemical under investigation (P3TA/Co-TiO<sub>2</sub>) at a higher dosage of 800 μg/mL, with inhibition zones of 2.0 mm and 2.1 mm, respectively. The antibacterial activity against <em>E. coli</em> and <em>S. aureus</em> at 400 μg/mL was negligible, with inhibition zones of 1.0 mm and 1.2 mm, respectively. Because these materials are affordable and adaptable, they further the field of nano photo-catalysts.</div></div>","PeriodicalId":101215,"journal":{"name":"Tetrahedron Green Chem","volume":"5 ","pages":"Article 100058"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tetrahedron Green Chem","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773223124000232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Methylene blue dye is used extensively in industries, including paper, temporary hair coloring, coating for paper stock wool, and cotton dying. When the amount of methylene blue dye is more significant than 2 mg/kg, it can lead to serious health issues in people, including cyanosis, tissue necrosis, elevated heart rate, vomiting, shock, and Heinz body formation. The present chapter discusses the sol-gel-assisted synthesis of P3TA-supported Cobalt-doped TiO2 nanohybrid. This study investigated the characteristics of both prepared bare TiO2 and metal (Co) doped nano-hybrid using a variety of analytical tools, including XRD, SEM-EDX, BET, FTIR, XPS, and UV–visible DRS. The photo-catalytic performance of prepared samples was executed towards the degradation of methylene blue (MB) dye under visible light irradiations. Additionally, tests for antibiotic resistance were performed on the pathogens E. coli and S. aureus. Significant antibacterial activities against E. coli and S. aureus were demonstrated by the chemical under investigation (P3TA/Co-TiO2) at a higher dosage of 800 μg/mL, with inhibition zones of 2.0 mm and 2.1 mm, respectively. The antibacterial activity against E. coli and S. aureus at 400 μg/mL was negligible, with inhibition zones of 1.0 mm and 1.2 mm, respectively. Because these materials are affordable and adaptable, they further the field of nano photo-catalysts.