Phytofabrication of silver nanoparticles using Ehretia rigida leaf aqueous extract, their characterization, antioxidant and antimicrobial activities

IF 7.1 3区 材料科学 Q1 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
Samson O. Oselusi , Nicole R.S. Sibuyi , Mervin Meyer , Samantha Meyer , Abram M. Madiehe
{"title":"Phytofabrication of silver nanoparticles using Ehretia rigida leaf aqueous extract, their characterization, antioxidant and antimicrobial activities","authors":"Samson O. Oselusi ,&nbsp;Nicole R.S. Sibuyi ,&nbsp;Mervin Meyer ,&nbsp;Samantha Meyer ,&nbsp;Abram M. Madiehe","doi":"10.1016/j.mtsust.2024.101059","DOIUrl":null,"url":null,"abstract":"<div><div>The green synthesis of nanoparticles (NPs) offers a sustainable, rapid, and cost-effective alternative to traditional chemical and physical methods, with diverse applications across various fields. This study reports the synthesis of silver nanoparticles (AgNPs) using <em>Ehretia rigida</em> (Er) leaf aqueous extract and evaluates their biological activities. The formation of the NPs was confirmed by the change in colour from clear to dark brown. The synthesis parameters, such as pH, temperature, Er extract and silver nitrate (AgNO<sub>3</sub>) concentrations, reaction ratio, and incubation time, were optimized for high yields, controlled size, and stability of the NPs. The optimized Er-AgNPs were characterized using ultraviolet–visible (UV–vis) spectroscopy, dynamic light scattering (DLS), Fourier transform infrared (FTIR) spectroscopy, and high-resolution transmission electron microscopy (HR–TEM). The Er-AgNPs sample presented a characteristic absorbance peak at 408 nm, a hydrodynamic size of 74.02 ± 0.19 nm, a polydispersity index (PDI) of 0.39 ± 0.05, and a zeta potential of −25.4 ± 6.26 mV. FTIR analysis revealed the nature of the biomolecules responsible for the reduction and stabilization of the NPs. HR–TEM revealed that the Er-AgNPs were spherical, with core sizes ranging from 6 to 18 nm. The Er leaf aqueous extract and Er-AgNPs possessed antioxidant activities, with the Er leaf extract having higher activity than Er-AgNPs. The Er leaf extract did not exhibit any antimicrobial activity, whereas the Er-AgNPs demonstrated broad-spectrum antimicrobial activities against all the tested pathogens. This study provides a sustainable, easy and cost-effective method to produce AgNPs for biomedical applications.</div></div>","PeriodicalId":18322,"journal":{"name":"Materials Today Sustainability","volume":"29 ","pages":"Article 101059"},"PeriodicalIF":7.1000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Sustainability","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589234724003956","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The green synthesis of nanoparticles (NPs) offers a sustainable, rapid, and cost-effective alternative to traditional chemical and physical methods, with diverse applications across various fields. This study reports the synthesis of silver nanoparticles (AgNPs) using Ehretia rigida (Er) leaf aqueous extract and evaluates their biological activities. The formation of the NPs was confirmed by the change in colour from clear to dark brown. The synthesis parameters, such as pH, temperature, Er extract and silver nitrate (AgNO3) concentrations, reaction ratio, and incubation time, were optimized for high yields, controlled size, and stability of the NPs. The optimized Er-AgNPs were characterized using ultraviolet–visible (UV–vis) spectroscopy, dynamic light scattering (DLS), Fourier transform infrared (FTIR) spectroscopy, and high-resolution transmission electron microscopy (HR–TEM). The Er-AgNPs sample presented a characteristic absorbance peak at 408 nm, a hydrodynamic size of 74.02 ± 0.19 nm, a polydispersity index (PDI) of 0.39 ± 0.05, and a zeta potential of −25.4 ± 6.26 mV. FTIR analysis revealed the nature of the biomolecules responsible for the reduction and stabilization of the NPs. HR–TEM revealed that the Er-AgNPs were spherical, with core sizes ranging from 6 to 18 nm. The Er leaf aqueous extract and Er-AgNPs possessed antioxidant activities, with the Er leaf extract having higher activity than Er-AgNPs. The Er leaf extract did not exhibit any antimicrobial activity, whereas the Er-AgNPs demonstrated broad-spectrum antimicrobial activities against all the tested pathogens. This study provides a sustainable, easy and cost-effective method to produce AgNPs for biomedical applications.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.80
自引率
6.40%
发文量
174
审稿时长
32 days
期刊介绍: Materials Today Sustainability is a multi-disciplinary journal covering all aspects of sustainability through materials science. With a rapidly increasing population with growing demands, materials science has emerged as a critical discipline toward protecting of the environment and ensuring the long term survival of future generations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信