{"title":"Rectification of kinematic parameters of dissociative ionization derived from ion momentum spectra","authors":"Akash Srivastav, Vishnu P, Bhas Bapat","doi":"10.1016/j.ijms.2024.117392","DOIUrl":null,"url":null,"abstract":"<div><div>Ion momentum spectrometers, which are commonly used devices for studying molecular dissociation, are lossy devices in that not all charged fragments are assuredly detected. Combined with the fact that neutrals are always undetected, this can result in a mixing of distinct dissociation channels. A dissociation event with all charged fragments may mimic an event where at least one fragment is neutral. As a result, an analysis of the dissociation channels identified using an ion pair coincidence map may result in misleading interpretations, especially when analyzing channels with both charged and neutral fragments. In this study, we present a method to rectify the distributions of kinematic parameters for such cases. The rectification method is discussed in the context of the (O<span><math><msup><mrow></mrow><mrow><mo>+</mo></mrow></msup></math></span>, C<span><math><msup><mrow></mrow><mrow><mo>+</mo></mrow></msup></math></span>, O) breakup channel of the CO<span><math><msubsup><mrow></mrow><mrow><mn>2</mn></mrow><mrow><mn>2</mn><mo>+</mo></mrow></msubsup></math></span> molecular ion. The distribution of the kinematic parameters after rectification exhibit stark differences from the raw distributions, emphasizing the need for rectification. A comparison of the rectified data with cases in the literature where such losses are estimated to be negligible, underline the efficacy of the method.</div></div>","PeriodicalId":338,"journal":{"name":"International Journal of Mass Spectrometry","volume":"508 ","pages":"Article 117392"},"PeriodicalIF":1.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387380624002033","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Ion momentum spectrometers, which are commonly used devices for studying molecular dissociation, are lossy devices in that not all charged fragments are assuredly detected. Combined with the fact that neutrals are always undetected, this can result in a mixing of distinct dissociation channels. A dissociation event with all charged fragments may mimic an event where at least one fragment is neutral. As a result, an analysis of the dissociation channels identified using an ion pair coincidence map may result in misleading interpretations, especially when analyzing channels with both charged and neutral fragments. In this study, we present a method to rectify the distributions of kinematic parameters for such cases. The rectification method is discussed in the context of the (O, C, O) breakup channel of the CO molecular ion. The distribution of the kinematic parameters after rectification exhibit stark differences from the raw distributions, emphasizing the need for rectification. A comparison of the rectified data with cases in the literature where such losses are estimated to be negligible, underline the efficacy of the method.
期刊介绍:
The journal invites papers that advance the field of mass spectrometry by exploring fundamental aspects of ion processes using both the experimental and theoretical approaches, developing new instrumentation and experimental strategies for chemical analysis using mass spectrometry, developing new computational strategies for data interpretation and integration, reporting new applications of mass spectrometry and hyphenated techniques in biology, chemistry, geology, and physics.
Papers, in which standard mass spectrometry techniques are used for analysis will not be considered.
IJMS publishes full-length articles, short communications, reviews, and feature articles including young scientist features.