PVP formulations of bis-cyclometalated iridium(III) complexes bearing β-modified porphyrin ligands: Characterization and photodynamic action on bladder cancer cells

IF 4.1 3区 工程技术 Q2 CHEMISTRY, APPLIED
Nuno M.M. Moura , Melani J.A. Reis , Carlos Lodeiro , M. Graça P.M. S. Neves , José A.S. Cavaleiro , Carlos F. Ribeiro , Rosa Fernandes , Ana T.P.C. Gomes
{"title":"PVP formulations of bis-cyclometalated iridium(III) complexes bearing β-modified porphyrin ligands: Characterization and photodynamic action on bladder cancer cells","authors":"Nuno M.M. Moura ,&nbsp;Melani J.A. Reis ,&nbsp;Carlos Lodeiro ,&nbsp;M. Graça P.M. S. Neves ,&nbsp;José A.S. Cavaleiro ,&nbsp;Carlos F. Ribeiro ,&nbsp;Rosa Fernandes ,&nbsp;Ana T.P.C. Gomes","doi":"10.1016/j.dyepig.2024.112580","DOIUrl":null,"url":null,"abstract":"<div><div>Cancer stands as the second leading global cause of death, following heart disease. Considering the severe side effects revealed by some chemotherapeutics for tumor treatment and anticancer therapies, the scientific community is actively exploring more effective alternatives. Photodynamic Therapy (PDT) mediated by porphyrin-based photosensitizers (PS) has emerged as an attractive alternative to more conventional therapies. In this study, we incorporated bis-cyclometalated iridium(III) complexes featuring porphyrin-arylbipyridine ligands into poly(vinylpyrrolidone) (PVP) micelle. This integration resulted in photostable PVP-PS formulations with a remarkable capability to generate singlet oxygen. These formulations were also efficiently internalized by HT-1379 cells and due to these features, their photodynamic action against human bladder cancer cells (HT-1376 cell line) was assessed. All the formulations demonstrated high photodynamic activity, with <strong>PVP-2</strong> and <strong>PVP-3</strong> proving to be the most promising PS, as evidenced by their lower IC50<sub>PDT</sub> values. It was also demonstrated that all PVP-based formulations provide a safe and effective approach for photodynamic therapy (PDT) in bladder cancer, as no cytotoxic effects were observed in Vero cells.</div></div>","PeriodicalId":302,"journal":{"name":"Dyes and Pigments","volume":"235 ","pages":"Article 112580"},"PeriodicalIF":4.1000,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dyes and Pigments","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143720824006466","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Cancer stands as the second leading global cause of death, following heart disease. Considering the severe side effects revealed by some chemotherapeutics for tumor treatment and anticancer therapies, the scientific community is actively exploring more effective alternatives. Photodynamic Therapy (PDT) mediated by porphyrin-based photosensitizers (PS) has emerged as an attractive alternative to more conventional therapies. In this study, we incorporated bis-cyclometalated iridium(III) complexes featuring porphyrin-arylbipyridine ligands into poly(vinylpyrrolidone) (PVP) micelle. This integration resulted in photostable PVP-PS formulations with a remarkable capability to generate singlet oxygen. These formulations were also efficiently internalized by HT-1379 cells and due to these features, their photodynamic action against human bladder cancer cells (HT-1376 cell line) was assessed. All the formulations demonstrated high photodynamic activity, with PVP-2 and PVP-3 proving to be the most promising PS, as evidenced by their lower IC50PDT values. It was also demonstrated that all PVP-based formulations provide a safe and effective approach for photodynamic therapy (PDT) in bladder cancer, as no cytotoxic effects were observed in Vero cells.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Dyes and Pigments
Dyes and Pigments 工程技术-材料科学:纺织
CiteScore
8.20
自引率
13.30%
发文量
933
审稿时长
33 days
期刊介绍: Dyes and Pigments covers the scientific and technical aspects of the chemistry and physics of dyes, pigments and their intermediates. Emphasis is placed on the properties of the colouring matters themselves rather than on their applications or the system in which they may be applied. Thus the journal accepts research and review papers on the synthesis of dyes, pigments and intermediates, their physical or chemical properties, e.g. spectroscopic, surface, solution or solid state characteristics, the physical aspects of their preparation, e.g. precipitation, nucleation and growth, crystal formation, liquid crystalline characteristics, their photochemical, ecological or biological properties and the relationship between colour and chemical constitution. However, papers are considered which deal with the more fundamental aspects of colourant application and of the interactions of colourants with substrates or media. The journal will interest a wide variety of workers in a range of disciplines whose work involves dyes, pigments and their intermediates, and provides a platform for investigators with common interests but diverse fields of activity such as cosmetics, reprographics, dye and pigment synthesis, medical research, polymers, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信