{"title":"Innovative thermal control of fermentations through the use of phase change materials: A focus on wine fermentation","authors":"Piernicola Masella , Giulia Angeloni , Ferdinando Corti , Agnese Spadi , Francesco Garbati Pegna , Lorenzo Guerrini , Alessandro Parenti","doi":"10.1016/j.afres.2024.100688","DOIUrl":null,"url":null,"abstract":"<div><div>The study aimed to investigate the feasibility of using Phase Change Materials (PCM) for temperature management during grape must fermentation, providing insights into potential energy-saving strategies in winemaking processes. The setup and procedure of fermentation tests at lab-scale with and without encapsulated PCM immersed in grape must are described. A global energy equation accounting for heat generated by fermentation and heat exchange by vessel walls was applied. fermentation with PCM shows a slower temperature increase compared to the control. While the control hits 30 °C in about 50 h, the PCM fermentation approaches this over 30 h later, peaking at 29.5 °C on average. This results in an average fermentation temperature of 24 °C with PCM versus 27 °C for the control, indicating PCM's effectiveness in absorbing fermentation heat and maintaining temperatures below the 30 °C target. Potential applications in winemaking for improved temperature management are proposed.</div></div>","PeriodicalId":8168,"journal":{"name":"Applied Food Research","volume":"5 1","pages":"Article 100688"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Food Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772502224002981","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The study aimed to investigate the feasibility of using Phase Change Materials (PCM) for temperature management during grape must fermentation, providing insights into potential energy-saving strategies in winemaking processes. The setup and procedure of fermentation tests at lab-scale with and without encapsulated PCM immersed in grape must are described. A global energy equation accounting for heat generated by fermentation and heat exchange by vessel walls was applied. fermentation with PCM shows a slower temperature increase compared to the control. While the control hits 30 °C in about 50 h, the PCM fermentation approaches this over 30 h later, peaking at 29.5 °C on average. This results in an average fermentation temperature of 24 °C with PCM versus 27 °C for the control, indicating PCM's effectiveness in absorbing fermentation heat and maintaining temperatures below the 30 °C target. Potential applications in winemaking for improved temperature management are proposed.