{"title":"Transcription factors – Insights into abiotic and biotic stress resilience and crop improvement","authors":"Roopali Bhoite , Olive Onyemaobi , Tanushree Halder , Manisha Shankar , Darshan Sharma","doi":"10.1016/j.cpb.2025.100434","DOIUrl":null,"url":null,"abstract":"<div><div>Numerous crop traits are controlled by multiple gene-networks. These gene-networks play a crucial role in crop evolution, disease prevention, stress adaptation and other fundamental processes in different organisms. Transcription factors (TFs) are master regulators of gene-networks and therefore have been targets for genetic improvement in crops since the dawn of agriculture. Enhancement of quantitative traits through plant breeding often involves manipulation of several TF sites and altered RNA expression. Advancements in OMICS technology have significantly expanded our understanding of transcription factor (TF) binding sites in plants and their roles in various biological processes. This progress has facilitated the validation of TF-related mutations and alleles, offering breeders new opportunities to achieve rapid genetic gains in response to abiotic and biotic stresses. The crop improvements using TFs as master targets is irrespective of crop type, mode of inheritance, number of operative genes and their interactions. Here, we review some of the intensively studied families of TFs– <em>bZIP, bHLH, NAC, ATAF, AP2/ERF, MYB, and WRKY</em> for abiotic and biotic stress resilience in crops and their potential as targets for crop improvement. Breeders’ perspective on status and relevance of TFs in the current breeding programs, utilization of precision editing and prospects of using TFs as regular targets in future crop improvement is discussed.</div></div>","PeriodicalId":38090,"journal":{"name":"Current Plant Biology","volume":"41 ","pages":"Article 100434"},"PeriodicalIF":5.4000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Plant Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214662825000027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Numerous crop traits are controlled by multiple gene-networks. These gene-networks play a crucial role in crop evolution, disease prevention, stress adaptation and other fundamental processes in different organisms. Transcription factors (TFs) are master regulators of gene-networks and therefore have been targets for genetic improvement in crops since the dawn of agriculture. Enhancement of quantitative traits through plant breeding often involves manipulation of several TF sites and altered RNA expression. Advancements in OMICS technology have significantly expanded our understanding of transcription factor (TF) binding sites in plants and their roles in various biological processes. This progress has facilitated the validation of TF-related mutations and alleles, offering breeders new opportunities to achieve rapid genetic gains in response to abiotic and biotic stresses. The crop improvements using TFs as master targets is irrespective of crop type, mode of inheritance, number of operative genes and their interactions. Here, we review some of the intensively studied families of TFs– bZIP, bHLH, NAC, ATAF, AP2/ERF, MYB, and WRKY for abiotic and biotic stress resilience in crops and their potential as targets for crop improvement. Breeders’ perspective on status and relevance of TFs in the current breeding programs, utilization of precision editing and prospects of using TFs as regular targets in future crop improvement is discussed.
期刊介绍:
Current Plant Biology aims to acknowledge and encourage interdisciplinary research in fundamental plant sciences with scope to address crop improvement, biodiversity, nutrition and human health. It publishes review articles, original research papers, method papers and short articles in plant research fields, such as systems biology, cell biology, genetics, epigenetics, mathematical modeling, signal transduction, plant-microbe interactions, synthetic biology, developmental biology, biochemistry, molecular biology, physiology, biotechnologies, bioinformatics and plant genomic resources.