Four Mars Years of ACB Phase Function Observations from the Mars Science Laboratory Show Low Interannual and Diurnal Variability and Suggest Irregular Water–ice Crystal Geometry
A.C. Innanen, C.W. Hayes, B.E. Koch Nichol, J.E. Moores
{"title":"Four Mars Years of ACB Phase Function Observations from the Mars Science Laboratory Show Low Interannual and Diurnal Variability and Suggest Irregular Water–ice Crystal Geometry","authors":"A.C. Innanen, C.W. Hayes, B.E. Koch Nichol, J.E. Moores","doi":"10.1016/j.icarus.2024.116437","DOIUrl":null,"url":null,"abstract":"<div><div>We extend previous work examining the water–ice cloud phase function to four years (Mars years 34-37) using observations taken during the Aphelion Cloud Belt season by the Mars Science Laboratory. From these phase functions, we continue to see little interannual or diurnal variability in Mars years 35-37, but potential diurnal variability in p=MY 34, which is not well understood. We use our derived phase functions to comment upon possible ice-crystal geometry by fitting a two-term Henyey–Greenstein function and comparing our results with those of modeled water–ice crystals and dust. These results suggest that cloud particles on Mars could have irregular geometry.</div></div>","PeriodicalId":13199,"journal":{"name":"Icarus","volume":"429 ","pages":"Article 116437"},"PeriodicalIF":2.5000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Icarus","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019103524004974","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
We extend previous work examining the water–ice cloud phase function to four years (Mars years 34-37) using observations taken during the Aphelion Cloud Belt season by the Mars Science Laboratory. From these phase functions, we continue to see little interannual or diurnal variability in Mars years 35-37, but potential diurnal variability in p=MY 34, which is not well understood. We use our derived phase functions to comment upon possible ice-crystal geometry by fitting a two-term Henyey–Greenstein function and comparing our results with those of modeled water–ice crystals and dust. These results suggest that cloud particles on Mars could have irregular geometry.
期刊介绍:
Icarus is devoted to the publication of original contributions in the field of Solar System studies. Manuscripts reporting the results of new research - observational, experimental, or theoretical - concerning the astronomy, geology, meteorology, physics, chemistry, biology, and other scientific aspects of our Solar System or extrasolar systems are welcome. The journal generally does not publish papers devoted exclusively to the Sun, the Earth, celestial mechanics, meteoritics, or astrophysics. Icarus does not publish papers that provide "improved" versions of Bode''s law, or other numerical relations, without a sound physical basis. Icarus does not publish meeting announcements or general notices. Reviews, historical papers, and manuscripts describing spacecraft instrumentation may be considered, but only with prior approval of the editor. An entire issue of the journal is occasionally devoted to a single subject, usually arising from a conference on the same topic. The language of publication is English. American or British usage is accepted, but not a mixture of these.