Four Mars Years of ACB Phase Function Observations from the Mars Science Laboratory Show Low Interannual and Diurnal Variability and Suggest Irregular Water–ice Crystal Geometry

IF 2.5 2区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
A.C. Innanen, C.W. Hayes, B.E. Koch Nichol, J.E. Moores
{"title":"Four Mars Years of ACB Phase Function Observations from the Mars Science Laboratory Show Low Interannual and Diurnal Variability and Suggest Irregular Water–ice Crystal Geometry","authors":"A.C. Innanen,&nbsp;C.W. Hayes,&nbsp;B.E. Koch Nichol,&nbsp;J.E. Moores","doi":"10.1016/j.icarus.2024.116437","DOIUrl":null,"url":null,"abstract":"<div><div>We extend previous work examining the water–ice cloud phase function to four years (Mars years 34-37) using observations taken during the Aphelion Cloud Belt season by the Mars Science Laboratory. From these phase functions, we continue to see little interannual or diurnal variability in Mars years 35-37, but potential diurnal variability in p=MY 34, which is not well understood. We use our derived phase functions to comment upon possible ice-crystal geometry by fitting a two-term Henyey–Greenstein function and comparing our results with those of modeled water–ice crystals and dust. These results suggest that cloud particles on Mars could have irregular geometry.</div></div>","PeriodicalId":13199,"journal":{"name":"Icarus","volume":"429 ","pages":"Article 116437"},"PeriodicalIF":2.5000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Icarus","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019103524004974","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

We extend previous work examining the water–ice cloud phase function to four years (Mars years 34-37) using observations taken during the Aphelion Cloud Belt season by the Mars Science Laboratory. From these phase functions, we continue to see little interannual or diurnal variability in Mars years 35-37, but potential diurnal variability in p=MY 34, which is not well understood. We use our derived phase functions to comment upon possible ice-crystal geometry by fitting a two-term Henyey–Greenstein function and comparing our results with those of modeled water–ice crystals and dust. These results suggest that cloud particles on Mars could have irregular geometry.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Icarus
Icarus 地学天文-天文与天体物理
CiteScore
6.30
自引率
18.80%
发文量
356
审稿时长
2-4 weeks
期刊介绍: Icarus is devoted to the publication of original contributions in the field of Solar System studies. Manuscripts reporting the results of new research - observational, experimental, or theoretical - concerning the astronomy, geology, meteorology, physics, chemistry, biology, and other scientific aspects of our Solar System or extrasolar systems are welcome. The journal generally does not publish papers devoted exclusively to the Sun, the Earth, celestial mechanics, meteoritics, or astrophysics. Icarus does not publish papers that provide "improved" versions of Bode''s law, or other numerical relations, without a sound physical basis. Icarus does not publish meeting announcements or general notices. Reviews, historical papers, and manuscripts describing spacecraft instrumentation may be considered, but only with prior approval of the editor. An entire issue of the journal is occasionally devoted to a single subject, usually arising from a conference on the same topic. The language of publication is English. American or British usage is accepted, but not a mixture of these.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信