An innovative biosensing approach for Aflatoxin B1 detection via electrical impedance measurement

Recep Üstünsoy , Tahsin Ertaş , Hülya Eraslan Gültekin , Ali Fuat Ergenç , Bircan Dinç , Muhammet Bektaş
{"title":"An innovative biosensing approach for Aflatoxin B1 detection via electrical impedance measurement","authors":"Recep Üstünsoy ,&nbsp;Tahsin Ertaş ,&nbsp;Hülya Eraslan Gültekin ,&nbsp;Ali Fuat Ergenç ,&nbsp;Bircan Dinç ,&nbsp;Muhammet Bektaş","doi":"10.1016/j.afres.2025.100734","DOIUrl":null,"url":null,"abstract":"<div><div>Aflatoxin B1 (AFB<sub>1</sub>) contamination poses a significant threat to food safety and public health, creating an urgent need for reliable and effective detection methods. This study presents a fast and sensitive biosensor for detecting AFB<sub>1</sub> in complex food samples. Scanning Electron Microscopy (SEM) shows the current functionalization of tungsten wires with antibodies and multi-walled carbon nanotubes (MWCNTs). The surface morphological changes are easily visible as they give rise to a roughened, textured surface that provides a greater active area, since the surface used for hydrogen evolution. Results from Differential Scanning Calorimetry (DSC) show that the enthalpy changes associated with antibody AFB<sub>1</sub> interactions are greater at higher AFB<sub>1</sub> concentrations, indicative of higher affinities of binding interactions. Differential scanning calorimetry (DSC) thermograms display clear endothermic peaks corresponding to different levels of AFB<sub>1</sub>, providing information about the melting point as well as the stability and binding characteristics of the antibody complex. The biosensor achieves a broad detection range (0.1 ppb to 30 ppb), with charge transfer resistance decreasing from 1.5 Ω·cm² to 0.5 Ω·cm² as AFB<sub>1</sub> concentration increases. Using Electrical Impedance Spectroscopy (EIS) and advanced nanomaterials, this biosensor enables real-time monitoring of molecular interactions. By addressing the limitations of traditional detection methods, it offers a practical solution for enhancing food safety and preventing AFB1 contamination.</div></div>","PeriodicalId":8168,"journal":{"name":"Applied Food Research","volume":"5 1","pages":"Article 100734"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Food Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772502225000447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Aflatoxin B1 (AFB1) contamination poses a significant threat to food safety and public health, creating an urgent need for reliable and effective detection methods. This study presents a fast and sensitive biosensor for detecting AFB1 in complex food samples. Scanning Electron Microscopy (SEM) shows the current functionalization of tungsten wires with antibodies and multi-walled carbon nanotubes (MWCNTs). The surface morphological changes are easily visible as they give rise to a roughened, textured surface that provides a greater active area, since the surface used for hydrogen evolution. Results from Differential Scanning Calorimetry (DSC) show that the enthalpy changes associated with antibody AFB1 interactions are greater at higher AFB1 concentrations, indicative of higher affinities of binding interactions. Differential scanning calorimetry (DSC) thermograms display clear endothermic peaks corresponding to different levels of AFB1, providing information about the melting point as well as the stability and binding characteristics of the antibody complex. The biosensor achieves a broad detection range (0.1 ppb to 30 ppb), with charge transfer resistance decreasing from 1.5 Ω·cm² to 0.5 Ω·cm² as AFB1 concentration increases. Using Electrical Impedance Spectroscopy (EIS) and advanced nanomaterials, this biosensor enables real-time monitoring of molecular interactions. By addressing the limitations of traditional detection methods, it offers a practical solution for enhancing food safety and preventing AFB1 contamination.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信