Yao Wei , Hong Wu , Haowen Kong , Yingju Miao , Ping Wang
{"title":"One-step synthesis of hierarchically porous fly ash-based NaX zeolite as assisted by CTAB for low-concentration CO2 adsorption","authors":"Yao Wei , Hong Wu , Haowen Kong , Yingju Miao , Ping Wang","doi":"10.1016/j.partic.2024.12.002","DOIUrl":null,"url":null,"abstract":"<div><div>Despite significant attention being drawn to the synthesis of zeolites from fly ash for CO<sub>2</sub> adsorption, few studies have focused on hierarchical porous NaX zeolites derived from fly ash. The existing synthesis methods are often complex, and the role of CTAB in zeolite formation remains unclear. To address these research gaps, we employed a one-step method for synthesizing hierarchically porous fly ash-based NaX zeolites with tunable mesoporosity. Utilizing CTAB as a template agent, we conducted a comprehensive investigation into the effects of varying CTAB dosages and aluminum source types on zeolite formation. The synthesized materials were fully characterized through XRD, FTIR, SEM, TEM, and N<sub>2</sub> adsorption/desorption analysis. The results showed that the mesoporous volume of the zeolites can be effectively controlled by adjusting the CTAB/Al<sub>2</sub>O<sub>3</sub> ratio. At an optimal ratio of 0.04, the synthesized zeolite has a surface area of 422 m<sup>2</sup>/g and a mesoporous volume of 0.116 cm<sup>3</sup>/g, which represents a two-fold increase compared to the NaX synthesized without CTAB. This improvement of mesoporosity significantly reduces the resistance to CO<sub>2</sub> diffusion, thereby enhancing the adsorption performance with a maximum adsorption capacity of 3.37 mmol/g and a high cyclic stability. A further investigation reveals the crucial role of CTAB in promoting mesopore formation and inhibiting crystal growth during zeolite synthesis. These findings provide valuable insights into the one-step synthesis of hierarchical porous zeolites.</div></div>","PeriodicalId":401,"journal":{"name":"Particuology","volume":"97 ","pages":"Pages 69-79"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particuology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674200124002529","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Despite significant attention being drawn to the synthesis of zeolites from fly ash for CO2 adsorption, few studies have focused on hierarchical porous NaX zeolites derived from fly ash. The existing synthesis methods are often complex, and the role of CTAB in zeolite formation remains unclear. To address these research gaps, we employed a one-step method for synthesizing hierarchically porous fly ash-based NaX zeolites with tunable mesoporosity. Utilizing CTAB as a template agent, we conducted a comprehensive investigation into the effects of varying CTAB dosages and aluminum source types on zeolite formation. The synthesized materials were fully characterized through XRD, FTIR, SEM, TEM, and N2 adsorption/desorption analysis. The results showed that the mesoporous volume of the zeolites can be effectively controlled by adjusting the CTAB/Al2O3 ratio. At an optimal ratio of 0.04, the synthesized zeolite has a surface area of 422 m2/g and a mesoporous volume of 0.116 cm3/g, which represents a two-fold increase compared to the NaX synthesized without CTAB. This improvement of mesoporosity significantly reduces the resistance to CO2 diffusion, thereby enhancing the adsorption performance with a maximum adsorption capacity of 3.37 mmol/g and a high cyclic stability. A further investigation reveals the crucial role of CTAB in promoting mesopore formation and inhibiting crystal growth during zeolite synthesis. These findings provide valuable insights into the one-step synthesis of hierarchical porous zeolites.
期刊介绍:
The word ‘particuology’ was coined to parallel the discipline for the science and technology of particles.
Particuology is an interdisciplinary journal that publishes frontier research articles and critical reviews on the discovery, formulation and engineering of particulate materials, processes and systems. It especially welcomes contributions utilising advanced theoretical, modelling and measurement methods to enable the discovery and creation of new particulate materials, and the manufacturing of functional particulate-based products, such as sensors.
Papers are handled by Thematic Editors who oversee contributions from specific subject fields. These fields are classified into: Particle Synthesis and Modification; Particle Characterization and Measurement; Granular Systems and Bulk Solids Technology; Fluidization and Particle-Fluid Systems; Aerosols; and Applications of Particle Technology.
Key topics concerning the creation and processing of particulates include:
-Modelling and simulation of particle formation, collective behaviour of particles and systems for particle production over a broad spectrum of length scales
-Mining of experimental data for particle synthesis and surface properties to facilitate the creation of new materials and processes
-Particle design and preparation including controlled response and sensing functionalities in formation, delivery systems and biological systems, etc.
-Experimental and computational methods for visualization and analysis of particulate system.
These topics are broadly relevant to the production of materials, pharmaceuticals and food, and to the conversion of energy resources to fuels and protection of the environment.