Extracting chemical food safety hazards from the scientific literature automatically using large language models

Neris Özen, Wenjuan Mu, Esther D. van Asselt, Leonieke M. van den Bulk
{"title":"Extracting chemical food safety hazards from the scientific literature automatically using large language models","authors":"Neris Özen,&nbsp;Wenjuan Mu,&nbsp;Esther D. van Asselt,&nbsp;Leonieke M. van den Bulk","doi":"10.1016/j.afres.2024.100679","DOIUrl":null,"url":null,"abstract":"<div><div>The number of scientific articles published in the domain of food safety has consistently been increasing over the last few decades. It has therefore become unfeasible for food safety experts to read all relevant literature related to food safety and the occurrence of hazards in the food chain. However, it is important that food safety experts are aware of the newest findings and can access this information in an easy and concise way. In this study, an approach is presented to automate the extraction of chemical hazards from the scientific literature through large language models. The large language model was used out-of-the-box and applied on scientific abstracts; no extra training of the models or a large computing cluster was required. Three different styles of prompting the model were tested to assess which was the most optimal for the task at hand. The prompts were optimized with two validation foods (leafy greens and shellfish) and the final performance of the best prompt was evaluated using three test foods (dairy, maize and salmon). The specific wording of the prompt was found to have a considerable effect on the results. A prompt breaking the task down into smaller steps performed best overall. This prompt reached an average accuracy of 93 % and contained many chemical contaminants already included in food monitoring programs, validating the successful retrieval of relevant hazards for the food safety domain. The results showcase how valuable large language models can be for the task of automatic information extraction from the scientific literature.</div></div>","PeriodicalId":8168,"journal":{"name":"Applied Food Research","volume":"5 1","pages":"Article 100679"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Food Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772502224002890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The number of scientific articles published in the domain of food safety has consistently been increasing over the last few decades. It has therefore become unfeasible for food safety experts to read all relevant literature related to food safety and the occurrence of hazards in the food chain. However, it is important that food safety experts are aware of the newest findings and can access this information in an easy and concise way. In this study, an approach is presented to automate the extraction of chemical hazards from the scientific literature through large language models. The large language model was used out-of-the-box and applied on scientific abstracts; no extra training of the models or a large computing cluster was required. Three different styles of prompting the model were tested to assess which was the most optimal for the task at hand. The prompts were optimized with two validation foods (leafy greens and shellfish) and the final performance of the best prompt was evaluated using three test foods (dairy, maize and salmon). The specific wording of the prompt was found to have a considerable effect on the results. A prompt breaking the task down into smaller steps performed best overall. This prompt reached an average accuracy of 93 % and contained many chemical contaminants already included in food monitoring programs, validating the successful retrieval of relevant hazards for the food safety domain. The results showcase how valuable large language models can be for the task of automatic information extraction from the scientific literature.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信