Impact of microwave processing on phytochemicals, antioxidant status, anti-nutritional factors and metabolite profile of maize flour

Alla Yaswanth Naveen Kumar , Alonkrita Chowdhury , Rajesh Kumar , Vivek Kumar Maurya , Subhasis Batabyal , Mayukh Ghosh
{"title":"Impact of microwave processing on phytochemicals, antioxidant status, anti-nutritional factors and metabolite profile of maize flour","authors":"Alla Yaswanth Naveen Kumar ,&nbsp;Alonkrita Chowdhury ,&nbsp;Rajesh Kumar ,&nbsp;Vivek Kumar Maurya ,&nbsp;Subhasis Batabyal ,&nbsp;Mayukh Ghosh","doi":"10.1016/j.afres.2025.100712","DOIUrl":null,"url":null,"abstract":"<div><div>Microwave processing can enhance phytochemicals and antioxidants, and reduce anti-nutritional factors (ANFs) in food grains but optimizing processing parameters and investigating effects on overall metabolite profile are needed to ensure desirable nutritional outcomes. This study investigates the effects of microwaving maize flour at different wattage (300, 600, and 800 watt) and duration (1.5–9 min) combinations on its phytochemicals, antioxidant capacity, ANFs, and metabolomics profile, using nine treatment groups (T1-T9) and non-microwaved control samples.. Phytochemicals exhibited treatment-dependent changes. Total phenolics (947.95–1304.77 µg GAE/g) and flavonoids (482.73–916.82 µg QE/g) varied, with flavonol content increasing (6.59–43.35 µg CE/g) and soluble sugar content decreasing (6563.13–15,578.75 µg DE/g) compared to the control. Antioxidant activities, such as ABTS scavenging (360.45–638.92 µg GAE/g), total antioxidant capacity (1888.38–2250.54 µg AAE/g), and cupric-reducing capacity (1008.64–2004.09 µg AAE/g), showed treatment-specific variations. DPPH scavenging (559.64–981.07 µg AAE/g) and ferric-reducing ability (790.18–1175.89 µg AAE/g) increased, whereas ascorbic acid content decreased (742.5–1423.75 µg/g). For ANFs, condensed tannin content showed overall decrease (338.17–626.58 µg CE/g), while oxalate (0.29–0.47 mg/g) and phytate content (32,078.33–36,270 µg PAE/g) showed treatment-specific reduction. LC<img>HRMS analysis revealed significant metabolite variations among treatment groups, forming distinct clusters in PCA, sPLS-DA, and dendrogram analyzes, comprising a diverse range of primary and secondary metabolites. The 600-watt, 2-minute microwave treatment was identified as optimal, boosting phytochemicals and antioxidants in maize flour while minimally impacting the main metabolite profile. The outcomes of this comprehensive analysis espouse microwave technology in maize-based food processing to benefit humans as well as the animal and poultry feed industries.</div></div>","PeriodicalId":8168,"journal":{"name":"Applied Food Research","volume":"5 1","pages":"Article 100712"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Food Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772502225000228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Microwave processing can enhance phytochemicals and antioxidants, and reduce anti-nutritional factors (ANFs) in food grains but optimizing processing parameters and investigating effects on overall metabolite profile are needed to ensure desirable nutritional outcomes. This study investigates the effects of microwaving maize flour at different wattage (300, 600, and 800 watt) and duration (1.5–9 min) combinations on its phytochemicals, antioxidant capacity, ANFs, and metabolomics profile, using nine treatment groups (T1-T9) and non-microwaved control samples.. Phytochemicals exhibited treatment-dependent changes. Total phenolics (947.95–1304.77 µg GAE/g) and flavonoids (482.73–916.82 µg QE/g) varied, with flavonol content increasing (6.59–43.35 µg CE/g) and soluble sugar content decreasing (6563.13–15,578.75 µg DE/g) compared to the control. Antioxidant activities, such as ABTS scavenging (360.45–638.92 µg GAE/g), total antioxidant capacity (1888.38–2250.54 µg AAE/g), and cupric-reducing capacity (1008.64–2004.09 µg AAE/g), showed treatment-specific variations. DPPH scavenging (559.64–981.07 µg AAE/g) and ferric-reducing ability (790.18–1175.89 µg AAE/g) increased, whereas ascorbic acid content decreased (742.5–1423.75 µg/g). For ANFs, condensed tannin content showed overall decrease (338.17–626.58 µg CE/g), while oxalate (0.29–0.47 mg/g) and phytate content (32,078.33–36,270 µg PAE/g) showed treatment-specific reduction. LCHRMS analysis revealed significant metabolite variations among treatment groups, forming distinct clusters in PCA, sPLS-DA, and dendrogram analyzes, comprising a diverse range of primary and secondary metabolites. The 600-watt, 2-minute microwave treatment was identified as optimal, boosting phytochemicals and antioxidants in maize flour while minimally impacting the main metabolite profile. The outcomes of this comprehensive analysis espouse microwave technology in maize-based food processing to benefit humans as well as the animal and poultry feed industries.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信