Digital models and 3D biomechanics analysis in orthodontics. Part 1: Vector calculations

IF 2.2 4区 医学 Q2 DENTISTRY, ORAL SURGERY & MEDICINE
Giorgio Fiorelli
{"title":"Digital models and 3D biomechanics analysis in orthodontics. Part 1: Vector calculations","authors":"Giorgio Fiorelli","doi":"10.1053/j.sodo.2024.11.001","DOIUrl":null,"url":null,"abstract":"<div><div>Biomechanics is essential for optimizing orthodontic appliances and controlling dental movement. Charles J. Burstone pioneered a three-dimensional (3D) approach in orthodontics, advocating for a shift beyond appliance-focused methods. Initially, biomechanics studies were constrained to two-dimensional (2D) analysis due to the complexities of 3D evaluation. Despite progress in computational tools and digital modeling, orthodontic biomechanics has largely maintained a 2D orientation. This paper advances orthodontic biomechanics into 3D, re-evaluating concepts previously limited to 2D frameworks. A dedicated software, DDP-Ortho (Ortolab, Poland), is introduced to enable orthodontists to analyze and resolve biomechanical challenges in 3D, facilitating appliance designs with precise 3D force systems. The representation and calculation of force vectors and moments in 3D are detailed, emphasizing the inherent complexity absent computational support. Key processes such as vector subtraction and addition, fundamental for assessing and refining orthodontic force systems, are explained. Additionally, the vector split (couple replacement) method, previously described in 2D, is extended to 3D, addressing the unique constraints and challenges of this approach. These tools promise to refine the accuracy and effectiveness of orthodontic treatments, setting the stage to examine the interactions between 3D force systems and dental movement, which will be addressed in a subsequent paper, to broaden the potential of contemporary orthodontic therapy.</div></div>","PeriodicalId":48688,"journal":{"name":"Seminars in Orthodontics","volume":"31 1","pages":"Pages 150-157"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seminars in Orthodontics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1073874624001348","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

Abstract

Biomechanics is essential for optimizing orthodontic appliances and controlling dental movement. Charles J. Burstone pioneered a three-dimensional (3D) approach in orthodontics, advocating for a shift beyond appliance-focused methods. Initially, biomechanics studies were constrained to two-dimensional (2D) analysis due to the complexities of 3D evaluation. Despite progress in computational tools and digital modeling, orthodontic biomechanics has largely maintained a 2D orientation. This paper advances orthodontic biomechanics into 3D, re-evaluating concepts previously limited to 2D frameworks. A dedicated software, DDP-Ortho (Ortolab, Poland), is introduced to enable orthodontists to analyze and resolve biomechanical challenges in 3D, facilitating appliance designs with precise 3D force systems. The representation and calculation of force vectors and moments in 3D are detailed, emphasizing the inherent complexity absent computational support. Key processes such as vector subtraction and addition, fundamental for assessing and refining orthodontic force systems, are explained. Additionally, the vector split (couple replacement) method, previously described in 2D, is extended to 3D, addressing the unique constraints and challenges of this approach. These tools promise to refine the accuracy and effectiveness of orthodontic treatments, setting the stage to examine the interactions between 3D force systems and dental movement, which will be addressed in a subsequent paper, to broaden the potential of contemporary orthodontic therapy.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Seminars in Orthodontics
Seminars in Orthodontics DENTISTRY, ORAL SURGERY & MEDICINE-
CiteScore
2.20
自引率
4.80%
发文量
28
审稿时长
10 days
期刊介绍: Each issue provides up-to-date, state-of-the-art information on a single topic in orthodontics. Readers are kept abreast of the latest innovations, research findings, clinical applications and clinical methods. Collection of the issues will provide invaluable reference material for present and future review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信