An analysis of the N-methyl-2-pyrrolidone: water complex using computational and matrix isolation FTIR methods

IF 1.4 4区 物理与天体物理 Q4 PHYSICS, ATOMIC, MOLECULAR & CHEMICAL
Isiah M. McMurray, Joseph R. Nettles, Aaron W. Uzelmeier, Jeremy A. Swartz, Josh J. Newby
{"title":"An analysis of the N-methyl-2-pyrrolidone: water complex using computational and matrix isolation FTIR methods","authors":"Isiah M. McMurray,&nbsp;Joseph R. Nettles,&nbsp;Aaron W. Uzelmeier,&nbsp;Jeremy A. Swartz,&nbsp;Josh J. Newby","doi":"10.1016/j.jms.2025.111985","DOIUrl":null,"url":null,"abstract":"<div><div>The weakly bound complexes of <em>N</em>-methyl-2-pyrrolidone (NMP) and water have been analyzed using a combination of computational methods and matrix isolation FTIR spectroscopy. The computational analysis utilized density functional and perturbation theory methods to determine the lowest energy geometries and vibrational frequencies of NMP: H<sub>2</sub>O. This analysis yielded four unique structures that could be differentiated by their preferred intermolecular interaction. Two structures formed via relatively strong OH⋯O hydrogen bonds, one structure was stabilized via OH⋯N interactions, and the fourth structure was observed to interact through relatively weak CH⋯O features. The interaction motifs were verified using atoms in molecules analysis and the noncovalent interaction index method. Spectra of NMP with H<sub>2</sub>O and its isotopologues showed clear evidence of two unique structures in the cryogenic nitrogen matrix. Both of these structures formed through OH⋯O interactions from the water to the carbonyl oxygen of NMP. This structural assignment was supported by the calculated vibrational shifts seen in NMP: H<sub>2</sub>O. A detailed analysis and discussion of this assignment is provided.</div></div>","PeriodicalId":16367,"journal":{"name":"Journal of Molecular Spectroscopy","volume":"408 ","pages":"Article 111985"},"PeriodicalIF":1.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Spectroscopy","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022285225000013","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The weakly bound complexes of N-methyl-2-pyrrolidone (NMP) and water have been analyzed using a combination of computational methods and matrix isolation FTIR spectroscopy. The computational analysis utilized density functional and perturbation theory methods to determine the lowest energy geometries and vibrational frequencies of NMP: H2O. This analysis yielded four unique structures that could be differentiated by their preferred intermolecular interaction. Two structures formed via relatively strong OH⋯O hydrogen bonds, one structure was stabilized via OH⋯N interactions, and the fourth structure was observed to interact through relatively weak CH⋯O features. The interaction motifs were verified using atoms in molecules analysis and the noncovalent interaction index method. Spectra of NMP with H2O and its isotopologues showed clear evidence of two unique structures in the cryogenic nitrogen matrix. Both of these structures formed through OH⋯O interactions from the water to the carbonyl oxygen of NMP. This structural assignment was supported by the calculated vibrational shifts seen in NMP: H2O. A detailed analysis and discussion of this assignment is provided.

Abstract Image

n -甲基-2-吡咯烷酮:水络合物的计算和基质分离FTIR分析
采用计算方法和基质分离FTIR光谱相结合的方法对n -甲基-2-吡咯烷酮(NMP)与水的弱结合配合物进行了分析。计算分析利用密度泛函和微扰理论方法确定了NMP: H2O的最低能量几何形状和振动频率。这种分析产生了四种独特的结构,可以通过它们首选的分子间相互作用来区分。两种结构通过相对较强的OH⋯O氢键形成,一种结构通过OH⋯N相互作用稳定,第四种结构通过相对较弱的CH⋯O特征相互作用。利用原子分子分析和非共价相互作用指数法对相互作用基序进行了验证。NMP与H2O及其同位素物的光谱显示,低温氮基质中存在两种独特的结构。这两种结构都是通过从水到NMP的羰基氧的OH⋯O相互作用形成的。这种结构分配得到了NMP: H2O中计算得到的振动位移的支持。对这项作业进行了详细的分析和讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
21.40%
发文量
94
审稿时长
29 days
期刊介绍: The Journal of Molecular Spectroscopy presents experimental and theoretical articles on all subjects relevant to molecular spectroscopy and its modern applications. An international medium for the publication of some of the most significant research in the field, the Journal of Molecular Spectroscopy is an invaluable resource for astrophysicists, chemists, physicists, engineers, and others involved in molecular spectroscopy research and practice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信