Extending the rotational spectrum of cyclopentadiene towards higher frequencies and vibrational states

IF 1.4 4区 物理与天体物理 Q4 PHYSICS, ATOMIC, MOLECULAR & CHEMICAL
Luis Bonah , Benedikt Helmstaedter , Jean-Claude Guillemin , Stephan Schlemmer , Sven Thorwirth
{"title":"Extending the rotational spectrum of cyclopentadiene towards higher frequencies and vibrational states","authors":"Luis Bonah ,&nbsp;Benedikt Helmstaedter ,&nbsp;Jean-Claude Guillemin ,&nbsp;Stephan Schlemmer ,&nbsp;Sven Thorwirth","doi":"10.1016/j.jms.2024.111967","DOIUrl":null,"url":null,"abstract":"<div><div>Cyclopentadiene ( <figure><img></figure> ) is a cyclic pure hydrocarbon that was already detected astronomically towards the prototypical dark cloud TMC-1 (Cernicharo et al., 2021). However, accurate predictions of its rotational spectrum are still limited to the microwave region and narrow quantum number ranges. In the present study, the pure rotational spectrum of cyclopentadiene was measured in the frequency ranges 170–250<!--> <!-->GHz and 340–510<!--> <!-->GHz to improve the number of vibrational ground state assignments by more than a factor of 20, resulting in more accurate rotational parameters and the determination of higher-order centrifugal distortion parameters. Additionally, vibrational satellite spectra of cyclopentadiene in its eight energetically lowest vibrationally excited states were analyzed for the first time. Coriolis interactions between selected vibrational states were identified and treated successfully in combined fits. Previous microwave work on the three singly <figure><img></figure> substituted isotopologues was extended significantly also covering frequency ranges up to 250<!--> <!-->GHz. The new data sets permit reliable frequency predictions for the isotopologues and vibrational satellite spectra far into the sub-mm-wave range. Finally, the experimental rotational constants of all available isotopologues and calculated zero-point vibrational contributions to the rotational constants were used to derive a semi-experimental equilibrium structure of this fundamental ring molecule.</div></div>","PeriodicalId":16367,"journal":{"name":"Journal of Molecular Spectroscopy","volume":"408 ","pages":"Article 111967"},"PeriodicalIF":1.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Spectroscopy","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022285224000948","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Cyclopentadiene (
) is a cyclic pure hydrocarbon that was already detected astronomically towards the prototypical dark cloud TMC-1 (Cernicharo et al., 2021). However, accurate predictions of its rotational spectrum are still limited to the microwave region and narrow quantum number ranges. In the present study, the pure rotational spectrum of cyclopentadiene was measured in the frequency ranges 170–250 GHz and 340–510 GHz to improve the number of vibrational ground state assignments by more than a factor of 20, resulting in more accurate rotational parameters and the determination of higher-order centrifugal distortion parameters. Additionally, vibrational satellite spectra of cyclopentadiene in its eight energetically lowest vibrationally excited states were analyzed for the first time. Coriolis interactions between selected vibrational states were identified and treated successfully in combined fits. Previous microwave work on the three singly
substituted isotopologues was extended significantly also covering frequency ranges up to 250 GHz. The new data sets permit reliable frequency predictions for the isotopologues and vibrational satellite spectra far into the sub-mm-wave range. Finally, the experimental rotational constants of all available isotopologues and calculated zero-point vibrational contributions to the rotational constants were used to derive a semi-experimental equilibrium structure of this fundamental ring molecule.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
21.40%
发文量
94
审稿时长
29 days
期刊介绍: The Journal of Molecular Spectroscopy presents experimental and theoretical articles on all subjects relevant to molecular spectroscopy and its modern applications. An international medium for the publication of some of the most significant research in the field, the Journal of Molecular Spectroscopy is an invaluable resource for astrophysicists, chemists, physicists, engineers, and others involved in molecular spectroscopy research and practice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信