Application of wavelet neural network with chaos theory for enhanced forecasting of pressure drop signals in vapor−liquid−solid fluidized bed evaporator
Xiaoping Xu , Ting Zhang , Zhimin Mu , Yongli Ma , Mingyan Liu
{"title":"Application of wavelet neural network with chaos theory for enhanced forecasting of pressure drop signals in vapor−liquid−solid fluidized bed evaporator","authors":"Xiaoping Xu , Ting Zhang , Zhimin Mu , Yongli Ma , Mingyan Liu","doi":"10.1016/j.cjche.2024.10.010","DOIUrl":null,"url":null,"abstract":"<div><div>The dynamics of vapor−liquid−solid (V−L−S) flow boiling in fluidized bed evaporators exhibit inherent complexity and chaotic behavior, hindering accurate prediction of pressure drop signals. To address this challenge, this study proposes an innovative hybrid approach that integrates wavelet neural network (WNN) with chaos analysis. By leveraging the Cross-Correlation (C−C) method, the minimum embedding dimension for phase space reconstruction is systematically calculated and then adopted as the input node configuration for the WNN. Simulation results demonstrate the remarkable effectiveness of this integrated method in predicting pressure drop signals, advancing our understanding of the intricate dynamic phenomena occurring with V−L−S fluidized bed evaporators. Moreover, this study offers a novel perspective on applying advanced data-driven techniques to handle the complexities of multi-phase flow systems and highlights the potential for improved operational prediction and control in industrial settings.</div></div>","PeriodicalId":9966,"journal":{"name":"Chinese Journal of Chemical Engineering","volume":"78 ","pages":"Pages 67-81"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1004954124003689","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The dynamics of vapor−liquid−solid (V−L−S) flow boiling in fluidized bed evaporators exhibit inherent complexity and chaotic behavior, hindering accurate prediction of pressure drop signals. To address this challenge, this study proposes an innovative hybrid approach that integrates wavelet neural network (WNN) with chaos analysis. By leveraging the Cross-Correlation (C−C) method, the minimum embedding dimension for phase space reconstruction is systematically calculated and then adopted as the input node configuration for the WNN. Simulation results demonstrate the remarkable effectiveness of this integrated method in predicting pressure drop signals, advancing our understanding of the intricate dynamic phenomena occurring with V−L−S fluidized bed evaporators. Moreover, this study offers a novel perspective on applying advanced data-driven techniques to handle the complexities of multi-phase flow systems and highlights the potential for improved operational prediction and control in industrial settings.
期刊介绍:
The Chinese Journal of Chemical Engineering (Monthly, started in 1982) is the official journal of the Chemical Industry and Engineering Society of China and published by the Chemical Industry Press Co. Ltd. The aim of the journal is to develop the international exchange of scientific and technical information in the field of chemical engineering. It publishes original research papers that cover the major advancements and achievements in chemical engineering in China as well as some articles from overseas contributors.
The topics of journal include chemical engineering, chemical technology, biochemical engineering, energy and environmental engineering and other relevant fields. Papers are published on the basis of their relevance to theoretical research, practical application or potential uses in the industry as Research Papers, Communications, Reviews and Perspectives. Prominent domestic and overseas chemical experts and scholars have been invited to form an International Advisory Board and the Editorial Committee. It enjoys recognition among Chinese academia and industry as a reliable source of information of what is going on in chemical engineering research, both domestic and abroad.