Micromixing efficiency and enhancement methods for non-Newtonian fluids in millimeter channel reactors

IF 3.7 3区 工程技术 Q2 ENGINEERING, CHEMICAL
Zhaoyi Song , Yuanxi Zhang , Guangwen Chu , Lei Shao , Yang Xiang
{"title":"Micromixing efficiency and enhancement methods for non-Newtonian fluids in millimeter channel reactors","authors":"Zhaoyi Song ,&nbsp;Yuanxi Zhang ,&nbsp;Guangwen Chu ,&nbsp;Lei Shao ,&nbsp;Yang Xiang","doi":"10.1016/j.cjche.2024.08.006","DOIUrl":null,"url":null,"abstract":"<div><div>Millimeter channel reactors (MCRs) have received increasing attention because of their ability to enhance treatment capacity in addition to the advantages of microchannels. In previous studies, less work has been conducted on the micromixing process and enhancement strategies for non-Newtonian fluids in MCRs. In this study, the micromixing efficiency in MCRs was experimentally investigated using CMC (aqueous carboxymethyl cellulose sodium) aqueous solution to simulate a non-Newtonian fluid, and the enhanced mechanism of micromixing efficiency by the addition of internals and rotation was analyzed by computational fluid dynamics (CFD) simulations. The results show that in the conventional channel, increasing the flow rate improves the micromixing efficiency when the CMC concentration is low. However, when the CMC concentration is higher, the higher the flow rate, the lower the micromixing efficiency. The highest micromixing efficiency is obtained for the rotationally coupled inner components, followed by the single rotation and the lowest is for the internals only. CFD simulations reveal that the most effective way to improve the micromixing efficiency of non-Newtonian fluids with shear-thinning behavior is to increase the shear force in the reactor, which effectively reduces the apparent viscosity. These results provide the theoretical foundation for enhancing the micromixing process of non-Newtonian fluids in small-size reactors.</div></div>","PeriodicalId":9966,"journal":{"name":"Chinese Journal of Chemical Engineering","volume":"78 ","pages":"Pages 108-119"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1004954124003021","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Millimeter channel reactors (MCRs) have received increasing attention because of their ability to enhance treatment capacity in addition to the advantages of microchannels. In previous studies, less work has been conducted on the micromixing process and enhancement strategies for non-Newtonian fluids in MCRs. In this study, the micromixing efficiency in MCRs was experimentally investigated using CMC (aqueous carboxymethyl cellulose sodium) aqueous solution to simulate a non-Newtonian fluid, and the enhanced mechanism of micromixing efficiency by the addition of internals and rotation was analyzed by computational fluid dynamics (CFD) simulations. The results show that in the conventional channel, increasing the flow rate improves the micromixing efficiency when the CMC concentration is low. However, when the CMC concentration is higher, the higher the flow rate, the lower the micromixing efficiency. The highest micromixing efficiency is obtained for the rotationally coupled inner components, followed by the single rotation and the lowest is for the internals only. CFD simulations reveal that the most effective way to improve the micromixing efficiency of non-Newtonian fluids with shear-thinning behavior is to increase the shear force in the reactor, which effectively reduces the apparent viscosity. These results provide the theoretical foundation for enhancing the micromixing process of non-Newtonian fluids in small-size reactors.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chinese Journal of Chemical Engineering
Chinese Journal of Chemical Engineering 工程技术-工程:化工
CiteScore
6.60
自引率
5.30%
发文量
4309
审稿时长
31 days
期刊介绍: The Chinese Journal of Chemical Engineering (Monthly, started in 1982) is the official journal of the Chemical Industry and Engineering Society of China and published by the Chemical Industry Press Co. Ltd. The aim of the journal is to develop the international exchange of scientific and technical information in the field of chemical engineering. It publishes original research papers that cover the major advancements and achievements in chemical engineering in China as well as some articles from overseas contributors. The topics of journal include chemical engineering, chemical technology, biochemical engineering, energy and environmental engineering and other relevant fields. Papers are published on the basis of their relevance to theoretical research, practical application or potential uses in the industry as Research Papers, Communications, Reviews and Perspectives. Prominent domestic and overseas chemical experts and scholars have been invited to form an International Advisory Board and the Editorial Committee. It enjoys recognition among Chinese academia and industry as a reliable source of information of what is going on in chemical engineering research, both domestic and abroad.
文献相关原料
公司名称
产品信息
阿拉丁
CMC
阿拉丁
KI
阿拉丁
H3BO3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信