Hyun chul Kim , Namhun Kwon , Jae-Hong Shin , Dong hyun Kim , Soong Ju Oh , Kyoung-Tae Park
{"title":"Titanium deoxidation mechanism probed using an electron beam melting method","authors":"Hyun chul Kim , Namhun Kwon , Jae-Hong Shin , Dong hyun Kim , Soong Ju Oh , Kyoung-Tae Park","doi":"10.1016/j.elecom.2024.107856","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we examine the volatilization of oxygen in titanium under electron beam melting (EBM) conditions, correlating the beam output with oxygen content changes. The potential for titanium deoxidation through the application of electron beams remains a subject of ongoing debate. To verify this experimentally, the effects of electron beam processing on the oxygen contents of different titanium raw materials are quantified by nitrogen/oxygen analysis. Moreover, the mechanism of oxygen diffusion in titanium, which is affected by the positively charged surface layer generated by the electron beam, is evaluated by determining the corresponding activation energy using density functional theory (DFT) calculations. An average reduction of oxygen concentration by 50 % was observed following EBM. Residual gas analysis confirmed the evolution of oxygen gas over a duration of 10 min. Thermodynamic calculations indicate that deoxidation is feasible at temperatures exceeding 4,000 K in a vacuum of approximately 5 <span><math><mrow><mo>×</mo></mrow></math></span> 10<sup>−7</sup> Torr, thereby substantiating the potential for deoxidation. Furthermore, DFT calculations demonstrated that the oxygen diffusion coefficient increases proportionally with an increase in positive surface charge, thereby facilitating the removal of oxygen in an electron beam environment.</div></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"170 ","pages":"Article 107856"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemistry Communications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1388248124001991","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we examine the volatilization of oxygen in titanium under electron beam melting (EBM) conditions, correlating the beam output with oxygen content changes. The potential for titanium deoxidation through the application of electron beams remains a subject of ongoing debate. To verify this experimentally, the effects of electron beam processing on the oxygen contents of different titanium raw materials are quantified by nitrogen/oxygen analysis. Moreover, the mechanism of oxygen diffusion in titanium, which is affected by the positively charged surface layer generated by the electron beam, is evaluated by determining the corresponding activation energy using density functional theory (DFT) calculations. An average reduction of oxygen concentration by 50 % was observed following EBM. Residual gas analysis confirmed the evolution of oxygen gas over a duration of 10 min. Thermodynamic calculations indicate that deoxidation is feasible at temperatures exceeding 4,000 K in a vacuum of approximately 5 10−7 Torr, thereby substantiating the potential for deoxidation. Furthermore, DFT calculations demonstrated that the oxygen diffusion coefficient increases proportionally with an increase in positive surface charge, thereby facilitating the removal of oxygen in an electron beam environment.
期刊介绍:
Electrochemistry Communications is an open access journal providing fast dissemination of short communications, full communications and mini reviews covering the whole field of electrochemistry which merit urgent publication. Short communications are limited to a maximum of 20,000 characters (including spaces) while full communications and mini reviews are limited to 25,000 characters (including spaces). Supplementary information is permitted for full communications and mini reviews but not for short communications. We aim to be the fastest journal in electrochemistry for these types of papers.