Marcela Sepúlveda , Hanna Sopha , Veronika Cicmancova , Ludek Hromadko , Jan M. Macak
{"title":"TiO2 nanotubes grown on Ti and Ti6Al4V alloy spheres by bipolar anodization","authors":"Marcela Sepúlveda , Hanna Sopha , Veronika Cicmancova , Ludek Hromadko , Jan M. Macak","doi":"10.1016/j.elecom.2024.107855","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, the anodization of spheres of Ti and Ti6Al4V alloy (TiAlV) in glycerol-based electrolytes using bipolar electrochemistry is shown for the first time. TiO<sub>2</sub> nanotube (TNT) layers were found over the entire surface area of the Ti and TiAlV spheres using a square wave potential of ±60 V and ±65 V with 5.56 × 10<sup>−4</sup> Hz. The TNTs’ inner diameter on the extremities of the Ti spheres was ∼63 nm and ∼78 nm, for ±60 V and ±65 V, respectively. The inner diameter of the TNTs fabricated on the TiAlV spheres was ∼36 nm and ∼43 nm for ±60 V and ±65 V, respectively. The effect of the alloying elements of the TiAlV spheres on the TNT layers was also investigated. To estimate the effective potential on the spheres contributing to the TNT layer formation, also the conventional anodization was performed on flat Ti and TiAlV foils for comparison. It was found that the effective potential reached on the extremities of the Ti and TiAlV spheres near the feeder electrodes was only 29 % and 16 % of the applied potential, respectively.</div></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"170 ","pages":"Article 107855"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemistry Communications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S138824812400198X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, the anodization of spheres of Ti and Ti6Al4V alloy (TiAlV) in glycerol-based electrolytes using bipolar electrochemistry is shown for the first time. TiO2 nanotube (TNT) layers were found over the entire surface area of the Ti and TiAlV spheres using a square wave potential of ±60 V and ±65 V with 5.56 × 10−4 Hz. The TNTs’ inner diameter on the extremities of the Ti spheres was ∼63 nm and ∼78 nm, for ±60 V and ±65 V, respectively. The inner diameter of the TNTs fabricated on the TiAlV spheres was ∼36 nm and ∼43 nm for ±60 V and ±65 V, respectively. The effect of the alloying elements of the TiAlV spheres on the TNT layers was also investigated. To estimate the effective potential on the spheres contributing to the TNT layer formation, also the conventional anodization was performed on flat Ti and TiAlV foils for comparison. It was found that the effective potential reached on the extremities of the Ti and TiAlV spheres near the feeder electrodes was only 29 % and 16 % of the applied potential, respectively.
期刊介绍:
Electrochemistry Communications is an open access journal providing fast dissemination of short communications, full communications and mini reviews covering the whole field of electrochemistry which merit urgent publication. Short communications are limited to a maximum of 20,000 characters (including spaces) while full communications and mini reviews are limited to 25,000 characters (including spaces). Supplementary information is permitted for full communications and mini reviews but not for short communications. We aim to be the fastest journal in electrochemistry for these types of papers.