The first-countability in generalizations of topological groups with ideal convergence

IF 0.6 4区 数学 Q3 MATHEMATICS
Xin Liu, Shou Lin, Xiangeng Zhou
{"title":"The first-countability in generalizations of topological groups with ideal convergence","authors":"Xin Liu,&nbsp;Shou Lin,&nbsp;Xiangeng Zhou","doi":"10.1016/j.topol.2024.109150","DOIUrl":null,"url":null,"abstract":"<div><div>The study of convergence in topological groups has become a frontier research subject. In many cases, the first-countability is an important and strong condition. Based on <span><math><msub><mrow><mi>I</mi></mrow><mrow><mi>s</mi><mi>n</mi></mrow></msub></math></span>-continuity, the present paper discusses how topology and algebra are related through a notion of continuity generated by ideal convergence. We introduce the classes of generalizations of topological groups, give the structures of <span><math><msub><mrow><mi>I</mi></mrow><mrow><mi>s</mi><mi>n</mi></mrow></msub></math></span>-topological groups by certain sequential coreflections, and obtain generalized metric properties of <span><math><mi>I</mi></math></span>-<em>snf</em>-countable para-<span><math><msub><mrow><mi>I</mi></mrow><mrow><mi>s</mi><mi>n</mi></mrow></msub></math></span>-topological groups.</div><div>Let <span><math><mi>I</mi></math></span> be an admissible ideal on the set <span><math><mi>N</mi></math></span> of natural numbers. The following results are obtained.<ul><li><span>(1)</span><span><div>Every T<sub>2</sub>, <span><math><mi>I</mi></math></span>-<em>snf</em>-countable para-<span><math><msub><mrow><mi>I</mi></mrow><mrow><mi>s</mi><mi>n</mi></mrow></msub></math></span>-topological group is an <em>sn</em>-quasi-metrizable and <em>cs</em>-submetrizable space.</div></span></li><li><span>(2)</span><span><div>A T<sub>0</sub>, <span><math><msub><mrow><mi>I</mi></mrow><mrow><mi>s</mi><mi>n</mi></mrow></msub></math></span>-topological group is an <span><math><mi>I</mi></math></span>-<em>snf</em>-countable space if and only if it is a <em>cs</em>-metrizable space satisfying that each sequentially open subset is <span><math><msub><mrow><mi>I</mi></mrow><mrow><mi>s</mi><mi>n</mi></mrow></msub></math></span>-open.</div></span></li></ul></div><div>These show the unique role of <span><math><msub><mrow><mi>I</mi></mrow><mrow><mi>s</mi><mi>n</mi></mrow></msub></math></span>-continuity in the study of topological groups and related structures, and present a version of topological algebra using the notion of ideals.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"360 ","pages":"Article 109150"},"PeriodicalIF":0.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166864124003353","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The study of convergence in topological groups has become a frontier research subject. In many cases, the first-countability is an important and strong condition. Based on Isn-continuity, the present paper discusses how topology and algebra are related through a notion of continuity generated by ideal convergence. We introduce the classes of generalizations of topological groups, give the structures of Isn-topological groups by certain sequential coreflections, and obtain generalized metric properties of I-snf-countable para-Isn-topological groups.
Let I be an admissible ideal on the set N of natural numbers. The following results are obtained.
  • (1)
    Every T2, I-snf-countable para-Isn-topological group is an sn-quasi-metrizable and cs-submetrizable space.
  • (2)
    A T0, Isn-topological group is an I-snf-countable space if and only if it is a cs-metrizable space satisfying that each sequentially open subset is Isn-open.
These show the unique role of Isn-continuity in the study of topological groups and related structures, and present a version of topological algebra using the notion of ideals.
具有理想收敛的拓扑群的推广中的第一可数性
拓扑群的收敛性研究已成为一个前沿研究课题。在许多情况下,第一可数性是一个重要且强有力的条件。本文在isn -连续性的基础上,通过理想收敛所产生的连续性概念,讨论了拓扑与代数之间的关系。引入了拓扑群的推广类,给出了isn -拓扑群的序共反射结构,得到了i -snf可数的拟isn -拓扑群的广义度量性质。设我是自然数集合N上的一个可容许理想。得到了以下结果:(1)每个T2, i- snf-可数的拟isn -可数拓扑群是一个sn-拟可度量和cs-子可度量的空间。(2)T0, isn -拓扑群是一个cs-可度量空间,当且仅当它是一个cs-可度量空间,满足每个序开子集是isn -开的。这表明了isn -连续性在拓扑群和相关结构研究中的独特作用,并提出了一种使用理想概念的拓扑代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
33.30%
发文量
251
审稿时长
6 months
期刊介绍: Topology and its Applications is primarily concerned with publishing original research papers of moderate length. However, a limited number of carefully selected survey or expository papers are also included. The mathematical focus of the journal is that suggested by the title: Research in Topology. It is felt that it is inadvisable to attempt a definitive description of topology as understood for this journal. Certainly the subject includes the algebraic, general, geometric, and set-theoretic facets of topology as well as areas of interactions between topology and other mathematical disciplines, e.g. topological algebra, topological dynamics, functional analysis, category theory. Since the roles of various aspects of topology continue to change, the non-specific delineation of topics serves to reflect the current state of research in topology. At regular intervals, the journal publishes a section entitled Open Problems in Topology, edited by J. van Mill and G.M. Reed. This is a status report on the 1100 problems listed in the book of the same name published by North-Holland in 1990, edited by van Mill and Reed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信